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This dissertation develops mathematical models to efficiently manage the in-

land waterway port operations while minimizing the overall supply chain cost. In

the first part, a capacitated, multi-commodity, multi-period mixed-integer linear

programming model is proposed capturing diversified inland waterway trans-

portation network related properties. We developed an accelerated Benders de-

composition algorithm to solve this challenging NP-hard problem. The next study

develops a two-stage stochastic mixed-integer nonlinear programming model to

manage congestion in an inland waterway transportation network under stochas-

tic commodity supply and water-level fluctuation scenarios. The model also jointly

optimizes trip-wise towboat and barge assignment decisions and different supply

chain decisions (e.g., inventory management, transportation decisions) in such a

way that the overall system cost can be minimized. We develop a parallelized hy-

brid decomposition algorithm, combining Constraint Generation algorithm, Sam-
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ple Average Approximation (SAA), and an enhanced variant of the L-shaped al-

gorithm, to effectively solve our proposed optimization model in a timely fashion.

While the first two parts develop models from the supply chain network de-

sign viewpoint, the next two parts propose mathematical models to emphasize the

port and waterway transportation related operations. Two two-stage, stochastic,

mixed-integer linear programming (MILP) models are proposed under stochastic

commodity supply and water level fluctuations scenarios. The last one puts the

specific focus in modeling perishable inventories. To solve the third model we pro-

pose to develop a highly customized parallelized hybrid decomposition algorithm

that combines SAA with an enhanced Progressive Hedging and Nested Decom-

position algorithm. Similarly, to solve the last mathematical model we propose

a hybrid decomposition algorithm combining the enhanced Benders decomposi-

tion algorithm and SAA to solve the large size of test instances of this complex,

NP-hard problem. Both proposed approaches are highly efficient in solving the

real-life test instances of the model to desired quality within a reasonable time

frame.

All the four developed models are validated a real-life case study focusing on

the inland waterway transportation network along the Mississippi river. A num-

ber of managerial insights are drawn for different key input parameters that im-

pact port operations. These insights will essentially help decisions makers to effec-

tively and efficiently manage an inland waterway-based transportation network.
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Key words: Inland waterway port, Port optimization, Congestion, Perishable prod-
ucts, Waterlevel fluctuation, Enhanced Benders decomposition algorithm, Sample
average approximation, Progressive Hedging algorithm, Hybrid nested decompo-
sition algorithm, Parallelization.



www.manaraa.com

DEDICATION

To my adorable son, my world, Arham Hossain.

ii



www.manaraa.com

ACKNOWLEDGEMENTS

I am very thankful to Almighty Allah for providing me everything I needed to

complete this dissertation and strengthened me in every steps of my doctoral life.

I am thankful to my dissertation committee chair Dr. Mohammad Marufuz-

zaman and my committee members Dr. Krystel Castillo, Dr. Linkan Bian, Dr.

Junfeng Ma, and Dr. Jonathan Woody for guiding and providing their valuable

insights on this dissertation. I would like to gratefully acknowledge the fund-

ing support provided by U.S. Army Engineer Research and Development Center

(ERDC) through Institute of Systems Engineering Research (ISER) Center to con-

duct this research. Additionally, I would like to acknowledge the funding support

provided by the Bagley College of Engineering (BCoE) and the Graduate School

of Mississippi State University that enabled me to showcase my research in inter-

national conferences.

I would like to extend my gratitude to Dr. Kari Babski-Reeves, Professor and

Head, Department of Industrial and Systems Engineering, Associate Dean, Bagley

College of Engineering, for her continuous encouragement and support through-

out my doctoral studies. I am also very grateful to Dr. Reuben Burch, Assistant

Professor, Department of Industrial and Systems Engineering, for his motivation

and continuous support towards my career.

iii



www.manaraa.com

Special thanks to the Department of Industrial & Systems Engineering at Mis-

sissippi State University for providing me academic, financial, and all other insti-

tutional supports while needed.

I have many good friends and colleagues who helped and supported me dur-

ing the past several years. I would like to thank Amin Aghalari, Dr. Mohannad

Kabli, Dr. Md. Abdul Quddus, and Morteza Alizadeh for being a great research

partner and co-authoring different research articles with me. I enjoyed working

with them. I would also like to thank Hunter, Eboni, Ayat, Darweesh, Badr, and

Milad for being great friends and classmates during my graduate school.

Moreover, I am grateful to my parents, family, colleagues, friends, who has

assisted and supported me in my doctoral journey. My husband, Niamat, has

been an incredible support for me. He has been a great colleague, co-researcher,

classmate, best peer, and my power house during these days as always. He was

there with me in every steps, despite of his business with PhD studies. Heartfelt

thanks to him for his patience. Most importantly, I am extremely thankful to my

little baby Arham for sharing all the work and defending the PhD Dissertation

with me being in mom’s womb. Thank you my little one!

iv



www.manaraa.com

TABLE OF CONTENTS

DEDICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

CHAPTER

1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2. OPTIMIZING INLAND WATERWAY PORT MANAGEMENT DE-
CISIONS CONSIDERING WATERLEVEL FLUCTUATIONS . . . . 10

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3 Problem Description and Model Formulation . . . . . . . . . 18
2.4 Solution Approach . . . . . . . . . . . . . . . . . . . . . . . . 29

2.4.1 Benders Decomposition Algorithm . . . . . . . . . . . 30
2.4.2 Enhancement of Benders Decomposition Algorithm . 34

2.4.2.1 Valid inequalities . . . . . . . . . . . . . . . . . . 34
2.4.2.2 Knapsack inequalities . . . . . . . . . . . . . . . 36
2.4.2.3 Pareto-optimal cuts . . . . . . . . . . . . . . . . 37
2.4.2.4 Input ordering . . . . . . . . . . . . . . . . . . . 40
2.4.2.5 Local Branching . . . . . . . . . . . . . . . . . . 41

2.5 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . 44
2.5.1 Analyzing the Performance of the Solution Algorithms 45
2.5.2 Case Study . . . . . . . . . . . . . . . . . . . . . . . . . 57

2.5.2.1 Data Description . . . . . . . . . . . . . . . . . . 58
2.5.2.2 Experimental Results . . . . . . . . . . . . . . . 64

2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

v



www.manaraa.com

3. A PARALLELIZED HYBRID DECOMPOSITION ALGORITHM TO
SOLVE A CONGESTED INLAND WATERWAY PORT MANAGE-
MENT PROBLEM UNDER UNCERTAINTY . . . . . . . . . . . . . 76

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
3.2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . 81
3.3 Problem Description and Model Formulation . . . . . . . . . 85

3.3.1 Linear Reformulation . . . . . . . . . . . . . . . . . . . 100
3.4 Solution Approach . . . . . . . . . . . . . . . . . . . . . . . . 104

3.4.1 Constraint Generation Algorithm . . . . . . . . . . . . 105
3.4.2 Sample Average Approximation . . . . . . . . . . . . . 111
3.4.3 L-shaped Algorithm . . . . . . . . . . . . . . . . . . . 114

3.4.3.1 Valid inequalities . . . . . . . . . . . . . . . . . . 118
3.4.3.2 Multicut L-shaped Algorithm . . . . . . . . . . 121
3.4.3.3 Knapsack inequality . . . . . . . . . . . . . . . . 122
3.4.3.4 Scenario Bundling . . . . . . . . . . . . . . . . . 123
3.4.3.5 Mean Value Cuts . . . . . . . . . . . . . . . . . . 124
3.4.3.6 Local Branching . . . . . . . . . . . . . . . . . . 130

3.4.4 Implementing Parallel Processing: . . . . . . . . . . . 132
3.5 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . 133

3.5.1 Data Description . . . . . . . . . . . . . . . . . . . . . . 136
3.5.2 Real-life Case Study . . . . . . . . . . . . . . . . . . . . 143
3.5.3 Performance Evaluation of the Algorithms . . . . . . 147

3.6 Conclusion and Future Research Directions . . . . . . . . . . 157

4. SOLVING A STOCHASTIC INLAND WATERWAY PORT MANAGE-
MENT PROBLEM USING A PARALLELIZED HYBRID DECOM-
POSITION ALGORITHM . . . . . . . . . . . . . . . . . . . . . . . . 159

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
4.2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . 163
4.3 Problem Description and Mathematical Model Formulation 167
4.4 Solution Approach . . . . . . . . . . . . . . . . . . . . . . . . 179

4.4.1 Sample Average Approximation . . . . . . . . . . . . . 179
4.4.2 Progressive Hedging Algorithm . . . . . . . . . . . . . 182
4.4.3 Enhanced Progressive Hedging Algorithm . . . . . . 188

4.4.3.1 Penalty Parameter Updating . . . . . . . . . . . 188
4.4.3.2 Global and Local Heuristic Strategies . . . . . . 189
4.4.3.3 Scenario Bundling . . . . . . . . . . . . . . . . . 191

4.4.4 Nested Decomposition Algorithm . . . . . . . . . . . . 192
4.4.4.1 Valid Inequalities: . . . . . . . . . . . . . . . . . 196
4.4.4.2 Benders cut: . . . . . . . . . . . . . . . . . . . . . 198
4.4.4.3 Lagrangian cut: . . . . . . . . . . . . . . . . . . . 198

vi



www.manaraa.com

4.4.4.4 Strengthened Benders cut: . . . . . . . . . . . . 201
4.4.5 Implementing Parallel Processing: . . . . . . . . . . . 202

4.5 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . 203
4.5.1 Data Description . . . . . . . . . . . . . . . . . . . . . . 206

4.5.1.1 Supply and demand data: . . . . . . . . . . . . . 206
4.5.1.2 Transportation cost: . . . . . . . . . . . . . . . . 208
4.5.1.3 Water level fluctuations: . . . . . . . . . . . . . . 211

4.5.2 Performance Evaluation of the Algorithms . . . . . . 211
4.5.3 Real-life Case Study . . . . . . . . . . . . . . . . . . . . 222

4.5.3.1 Impact of water level fluctuation (w̄ijtω) on over-
all system performance . . . . . . . . . . . . . . 222

4.5.3.2 Impact of commodity supply (φmitω) changes on
overall system performance . . . . . . . . . . . 224

4.6 Conclusion and Future Research Directions . . . . . . . . . . 225

5. A BENDER’S BASED NESTED DECOMPOSITION ALGORITHM
TO SOLVE A STOCHASTIC INLAND WATERWAY PORT MAN-
AGEMENT PROBLEM CONSIDERING PERISHABLE PRODUCT 228

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228
5.2 Literature review . . . . . . . . . . . . . . . . . . . . . . . . . 232
5.3 Problem Description and Model Formulation . . . . . . . . . 236
5.4 Solution Approach . . . . . . . . . . . . . . . . . . . . . . . . 250

5.4.1 Sample Average Approximation . . . . . . . . . . . . . 250
5.4.2 Benders Decomposition Algorithm . . . . . . . . . . . 253
5.4.3 Enhancement of Benders Decomposition Algorithm . 259

5.4.3.1 Valid inequalities . . . . . . . . . . . . . . . . . . 259
5.4.3.2 Multi-cuts . . . . . . . . . . . . . . . . . . . . . . 269
5.4.3.3 Pareto-optimal cuts . . . . . . . . . . . . . . . . 271
5.4.3.4 Mean-value cuts . . . . . . . . . . . . . . . . . . 276
5.4.3.5 Knapsack inequalities . . . . . . . . . . . . . . . 281
5.4.3.6 Integer cut . . . . . . . . . . . . . . . . . . . . . . 282
5.4.3.7 Warm start strategy . . . . . . . . . . . . . . . . 283
5.4.3.8 Heuristic improvements . . . . . . . . . . . . . . 285

5.5 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . 285
5.5.1 Data Description . . . . . . . . . . . . . . . . . . . . . . 286

5.5.1.1 Inland waterway port locations . . . . . . . . . 286
5.5.1.2 Supply data . . . . . . . . . . . . . . . . . . . . . 286
5.5.1.3 Demand data . . . . . . . . . . . . . . . . . . . . 288
5.5.1.4 Transportation cost . . . . . . . . . . . . . . . . . 291
5.5.1.5 Water-level Fluctuations . . . . . . . . . . . . . . 291

5.5.2 Real-life Case Study . . . . . . . . . . . . . . . . . . . . 293

vii



www.manaraa.com

5.5.2.1 The impact of deterioration rate αmτt on the over-
all system performance . . . . . . . . . . . . . . 293

5.5.2.2 Impact of water level fluctuation wijtω on over-
all system performance . . . . . . . . . . . . . . 296

5.5.3 Performance Evaluation of the Algorithms . . . . . . 299
5.6 Conclusion and Future Research Directions . . . . . . . . . . 311

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313

viii



www.manaraa.com

LIST OF TABLES

2.1 Problem size and test cases . . . . . . . . . . . . . . . . . . . . . . . . 52

2.2 Comparison of different solution approaches . . . . . . . . . . . . . . 53

2.3 Comparison of different solution approaches (cont’d) . . . . . . . . . 54

2.4 Comparison between different settings of local branching (for small

instance) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

2.5 Comparison between different settings of local branching (for large

instance) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

2.6 Results of Wilcoxon signed rank test . . . . . . . . . . . . . . . . . . . 57

2.7 Description of scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.1 Problem size and test instances . . . . . . . . . . . . . . . . . . . . . . 151

3.2 Experimental result for all cuts presented in section . . . . . . . . . . 153

3.3 Experimental results for CF-I under different parallelization schemes 155

3.4 Experimental results for CF-II under different parallelization schemes 156

4.1 Problem size and test instances . . . . . . . . . . . . . . . . . . . . . . 217

4.2 Experimental result for basic and enhanced PHA algorithm (N=20) . 218

4.3 Experimental result for basic and enhanced PHA algorithm (N=30) . 219

4.4 Experimental result for Hybrid Nested Decomposition algorithm. . . 220

ix



www.manaraa.com

4.5 Experimental result for best algorithms under different paralleliza-

tion schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

4.6 Computational performance of the proposed parallelization schemes

under different water level (w̄ijtω) and supply (φmitω) scenarios . . . 222

5.1 Problem size and test instances . . . . . . . . . . . . . . . . . . . . . . 300

5.2 Experimental results of Type-1 and Type-2 cut with and without PO

cut . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301

5.3 Experimental results with Type A, B, C, and D cuts . . . . . . . . . . 303

5.4 Impact of pareto-optimal cut, integer cut, warm start strategy in Type

D cut (Part 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308

5.5 Impact of pareto-optimal cut, integer cut, warm start strategy in Type

D cut (Part 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309

5.6 Impact of pareto-optimal cut, integer cut, warm start strategy in Type

D cut (Part 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310

x



www.manaraa.com

LIST OF FIGURES

2.1 Illustration of an inland waterway transportation network . . . . . . 19

2.2 Customer demand sorting . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.3 Existing inland waterway port locations along the Mississippi River 59

2.4 Supply availability for (a) rice, (b) corn, (c) fertilizer, and (d) wood-

chips in the test region (in 1,000 tons) . . . . . . . . . . . . . . . . . . 61

2.5 Demand for (a) rice, (b) corn, (c) fertilizer, and (d) woodchips in the

test region (in 1,000 tons) . . . . . . . . . . . . . . . . . . . . . . . . . 62

2.6 Example demonstrating water level fluctuations between Port of Rosedale

and Port of Greenville from July, 2016 to June, 2017 [139] . . . . . . . 65

2.7 Selection of Y2
mbsjt and Y2

mbsjt/Y1
snjkt under different water level scenarios 67

2.8 Impact of supply changes on system performances . . . . . . . . . . 69

2.9 Impact of demand changes on system performances . . . . . . . . . . 71

2.10 Impact of barge availability on system performances . . . . . . . . . 73

3.1 Illustration of an inland waterway transportation network . . . . . . 86

3.2 Parallelization scheme 1 . . . . . . . . . . . . . . . . . . . . . . . . . . 134

3.3 Parallelization scheme 2 . . . . . . . . . . . . . . . . . . . . . . . . . . 135

3.4 Inland waterway port locations along the Mississippi River . . . . . 137

xi



www.manaraa.com

3.5 Supply availability for (a) rice, (b) corn, (c) fertilizer, and (d) wood-

chips in the test region (in 1,000 tons) . . . . . . . . . . . . . . . . . . 139

3.6 Demand for (a) rice, (b) corn, (c) fertilizer, and (d) woodchips in the

test region (in 1,000 tons) . . . . . . . . . . . . . . . . . . . . . . . . . 141

3.7 Demonstration waterlevel fluctuations between Port of Rosedale and

Port of Greenville from July, 2016 to June, 2017 [139] . . . . . . . . . . 143

3.8 Impact of w̄jktω changes on overall system performance . . . . . . . . 146

3.9 Impact of supply (φmit) changes on (a) barge and (b) towboat selection149

3.10 Impact of supply (φmit) changes on Ymbsjt and Umgtω decisions . . . . 150

4.1 Illustration of an inland waterway transportation network . . . . . . 168

4.2 Nested decomposition algorithm . . . . . . . . . . . . . . . . . . . . . 196

4.3 Parallelization scheme I . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

4.4 Parallelization scheme II . . . . . . . . . . . . . . . . . . . . . . . . . . 205

4.5 Inland waterway port locations along the Mississippi River . . . . . 207

4.6 Supply availability for (a) rice, (b) corn, (c) fertilizer, and (d) wood-

chips in the test region (in 1,000 tons) . . . . . . . . . . . . . . . . . . 209

4.7 Demand of (a) rice, (b) corn, (c) fertilizer, and (d) woodchips in the

test region (in 1,000 tons) . . . . . . . . . . . . . . . . . . . . . . . . . 210

4.8 Demonstration of water level fluctuations between Port of Rosedale

and Port of Greenville from July, 2016 to June, 2017 [139] . . . . . . . 212

4.9 Impact of w̄ijtω changes on barge selection (Ymbsijt) and barge to tow-

boat ratio (Ymbsijt/Ysijt) . . . . . . . . . . . . . . . . . . . . . . . . . . . 224

xii



www.manaraa.com

4.10 Impact of φmitω changes on overall system performance. . . . . . . . 226

5.1 Illustration of a inland waterway transportation network . . . . . . . 238

5.2 Inland waterway port locations along the Mississippi River . . . . . 287

5.3 Supply availability for (a) Corn and (b) Soybean in the test region (in

1,000 tons) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289

5.4 Demand of (a) Corn and (b) Soybean in the test region (in 1,000 tons) 290

5.5 Demonstration water level fluctuations between Port of Rosedale and

Port of Greenville from July, 2016 to June, 2017 [139] . . . . . . . . . . 292

5.6 Impact of αmτt changes on overall system performance. . . . . . . . . 295

5.7 Impact of wijtω changes on overall system performance. . . . . . . . 298

xiii



www.manaraa.com

CHAPTER 1

INTRODUCTION

1.1 Introduction

Inland waterway ports are indispensable components of the nation’s waterway

transportation system which greatly contributes to the overall economy of the na-

tion. Currently, more than 60% of the United States grain exports, 22% petroleum

and petroleum products, and 20% coal are transported through inland waterway

ports [140]. Additionally, these ports contribute approximately 15 billion dollars to

the nation’s GDP (Gross Domestic Product) along with creating more than 250,000

job opportunities (both direct and indirect) annually [89]. Inland ports play a ma-

jor role in the rural industrial and agricultural development for a nation [84]. De-

spite of their great potentiality, this segment of transportation system is frequently

impacted by many factors which hurts it’s productivity, including but not limited

to congestion, aging infrastructure, delays caused by scheduled and unscheduled

closures of locks (primarily due to maintenance activities), and many others [140].

According to the American Society of Civil Engineers (ASCE), in 2010, the United

States encountered a total of $33 billions of additional annual expenditure primar-

ily due to the delays governed by congestion and other waterway specific issues

[8]. This cost will continue to increase over time and is projected to reach nearly

1
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$49 billions by 2020 [8]. Therefore, optimizing the shipment planning is manda-

tory for the inland waterway ports not only to gain competitive advantage over its

counterparts (e.g., rail, trucks) but also to survive in this increasingly competitive

market.

Though seemingly sound similar, inland waterway ports hold some unique

properties that differ them significantly from the seaports. For instance, these ports

generally handle barge traffic drafting upto 9 feet only, located primarily near

smaller bodies of water (e.g., rivers and canals), usually land intensive, and/or

handle smaller counts of larger users and a large number of smaller users [84].

Additionally, the water level between the channels of two connecting inland wa-

terway ports fluctuates heavily in different time periods of the year [139, 94, 90].

Depending on the severity of this fluctuation, these ports, including the waterway

itself, often experience disruptions, such as drought and flood that may tremen-

dously impact or even cease the port operations for an extended period of time.

Another prevalent feature that distinguishes inland waterway ports over seaports

is that these ports commute heavy volume of perishable agricultural products

which are highly seasonal in nature. The seasonality in agricultural products

coupled with time varying waterway conditions and the availability of locks and

dams between two source destination ports may excessively delay the port op-

erations which directly impacts the operational planning of the ports under con-

sideration. With all these outstanding challenges, it is quite certain that the opti-

mization models available in the literature for the maritime transportation may no
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longer be directly applicable for the inland waterway ports. Hence, to ensure long

term sustainment of the inland waterway ports, there is a critical need to develop

sophisticated optimization models that best capture the unique characteristics of

this cost efficient, reliable, and environmentally friendly transportation sector.

A major stream of ongoing research develop optimization models to solve di-

versified seaport-related problems, such as ship routing and scheduling [33, 29,

68], inventory routing [5], berth allocation and scheduling [27, 32, 141], empty

container re-positioning [43], sailing speed optimization [73, 141], bunker con-

sumption [145], emission consideration [141], disruption [43, 126], container rout-

ing [146], port delays [148], and many others. Apart from adopting mathematical

approaches, few researchers develop simulation models to address similar prob-

lems (e.g., [118, 125, 121, 44]). Even though deep penetration to seaport research

is observed, inland waterway ports did not receive much attention from the re-

search community. A few considerations can be noticed for deep draft inland ports

which are capable of handling container cargos and ships; however, almost no

research has been conducted to date that puts specific considerations to model

shallow draft inland ports1. These ports primarily handle shallow draft vessels (e.g.,

barge, towboats). Considering their outstanding contributions in the overall trans-

portation system and economy, better understanding of shallow draft inland wa-

1The ports that are unable to handle barges/vessels drafting more than 9 feet are known as
shallow draft inland ports. For the ones that can handle barges/vessels drafting more than 9 feet, are
known as deep draft inland ports.
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terway ports is imperative to successfully design and manage a sound and efficient

supply chain network.

This dissertation is divided into four sections. The contribution of each section

is mentioned at the corresponding chapter. The first section (CHAPTER II) inves-

tigate shallow draft inland port operations and their impacts on different supply

chain decisions. We propose a multi-commodity, multi-time period Mixed-integer

Linear Programming (MILP) model that optimizes short-term operational deci-

sions such as trip-wise towboat and barge assignment with mid-term supply chain

decisions (e.g., inventory management decisions) in such a way that the overall

supply chain cost can be minimized. The model realistically captures a number

of factors that characterize/impact the operations in a shallow draft inland port,

such as towboat and barge availability, weight and volumetric capacity restriction

of barges, dredging issues, commodity mix restriction, storage restrictions at ports,

trip restrictions between origin-destination ports, and many others. The output

of our model provides optimal towboat and barge assignment, amount of com-

modities stored and transported to different layers of the supply chain network

so that the overall system cost can be minimized. We realize that our proposed

model is an extension of the fixed charged, uncapacitated network flow problem

which is already known to be an NP-hard problem [74]. Therefore, solving large

instances of this problem is a challenging task. This motivates us to develop a

highly customized solution approach based on the traditional Benders decompo-

sition algorithm. To enhance the performance of our algorithm, we create several
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stronger cuts, including problem-specific valid inequalities, knapsack inequalities,

pareto-optimal cuts, input ordering, and local branching. In addition to propos-

ing the model, another important contribution of this study is to apply this model

to a real world case study. We use a few states from the Southeast United States

as a testing ground to visualize and validate the modeling results. The outcome

of this study provides a number of managerial insights, such as impact of water

level fluctuation on towboat and barge selection, demand and supply changes,

and barge availability on overall system performance, which can effectively aid

decision makers to design a cost-efficient shallow draft inland waterway trans-

portation network.

In the second section (CHAPTER III) we propose a model which specifically

focus in port congestion while considering shallow draft inland waterway port-

related internal (e.g., barge/towboat assignments, inventory decisions, port de-

lays) and external (e.g., waterlevel fluctuations) factors/decisions that impact the

overall supply chain system performance. We propose a capacitated, multi-commodity,

multi-period, two-stage stochastic mixed-integer nonlinear programming model

which jointly optimizes trip-wise towboat and barge assignment decisions along

with different supply chain decisions (e.g., inventory management, transportation

decisions) under a congested and stochastic environment and in such a way that

the overall supply chain cost can be minimized. The proposed model realisti-

cally captures a number of factors that appropriately characterize the operations

of a shallow draft inland waterway port, such as towboat and barge availability,
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weight and volumetric capacity restriction of barges, dredging issues, commodity

mixture restrictions, storage restrictions at ports, trip restrictions between origin-

destination ports, congestion issues, delays in locks and dams, and many others.

We realized that our proposed mathematical model is NP-hard. Therefore, we

develop a highly customized parallelized hybrid decomposition algorithm, com-

bining Constraint Generation algorithm, Sample Average Approximation, and an

enhanced variant of the L-shaped algorithm, to effectively solve the large instances

of our proposed optimization model in a reasonable amount of time. We solved

a real world case study to visualize and validate our modeling results. Identical

to the case study of Chapter II, inland waterway transportation network along the

Mississippi river is used as a testing ground. The outcome of this study provides

a number of managerial insights, such as the impact of water level fluctuations

on towboat and barge selection, cost due to delay in transportation, and commod-

ity supply fluctuations on overall system performance, which can effectively aid

decision makers to design a cost-efficient shallow draft inland waterway trans-

portation network.

The next Section (CHAPTER IV) puts more emphasize in waterway fluctua-

tion and related issues and develops reliable optimization model that account for

different factors which frequently impact the inland waterway port operations. A

capacitated, multi-commodity, multi-period, two-stage stochastic mixed-integer

linear programming model is proposed that jointly optimizes trip-wise barge and

towboat assignment decisions along with inventory management and transporta-
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tion decisions with a goal of minimizing the overall system cost under water level

and commodity supply uncertainty. Since first two chapters analyze and optimize

the model from a supply chain viewpoint, this chapter puts more emphasize in

waterway port based transportation and resource allocation decisions removing

any external tiers than the origin (the point where the waterway transportation

starts) and destination ports (the point where the waterway transportation ends).

To solve this NP-hard problem and obtain solutions within a limited computa-

tional time, we develop a highly customized parallelized hybrid decomposition al-

gorithm which combines Sample Average Approximation with an enhanced Pro-

gressive Hedging (PH) and Nested Decomposition (ND) algorithm. Several tech-

niques are used to enhance the PH algorithm, such as penalty parameter updating,

global and local heuristics, and scenario bundling techniques. On the other hand,

techniques, such as problem-specific valid inequalities, strengthened Benders and

Lagrangian cuts, are used to enhance the performance of the ND algorithm. To

the end, two parallelization schemes are proposed to parallelize the entire hybrid

decomposition algorithm. Extensive computational experiments are presented to

demonstrate how the parallelized hybrid decomposition algorithm effectively and

efficiently solves the proposed mathematical model. Apart from proposing the

mathematical model and solution approaches, we demonstrate a real-life appli-

cation by utilizing the inland waterway transportation network along the lower

Mississippi River. The outcome of this study provides a number of managerial in-
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sights which may effectively aid decision makers to design a cost-efficient shallow

draft inland waterway transportation network.

The last section (CHAPTER V) extends the previous section (CHAPTER IV)

to consider the commodity perishability issues in managing port inventories. We

proposed a mathematical model that captures the prevalent inland waterway port

related issues (e.g., waterlevel fluctuations, barge/towboat assignments, inven-

tory decisions, and port delays) and combine them under the same decision mak-

ing framework that magnifies their impacts on designing and managing a sound,

robust inland waterway transportation network. Our proposed multi-commodity,

multi-period, two-stage stochastic mixed-integer linear programming model ef-

ficiently captures all the aforementioned issues that appropriately characterizes

the shallow draft inland waterway port operations. Our proposed mathemati-

cal model is NP-hard [74]. Therefore, to cope with the computational challenge

in solving this model we develop a highly customized nested decomposition al-

gorithm. This algorithm combines enhanced Benders decomposition algorithm

under Sample Average Approximation framework to effectively solve the large

instances of our proposed model within a reasonable time frame. Further, we

demonstrate a real life application of our proposed model considering the inland

waterway transportation network along the lower Mississippi river. The outcome

of this study provides a number of managerial insights, such as the impact of wa-

ter level fluctuations on towboat and barge selection, and impact of commodity

deterioration rate on overall system performance, which can effectively aid deci-

8



www.manaraa.com

sion makers to design a reliable and cost-efficient shallow draft inland waterway

transportation network under uncertainty.

9



www.manaraa.com

CHAPTER 2

OPTIMIZING INLAND WATERWAY PORT MANAGEMENT DECISIONS

CONSIDERING WATERLEVEL FLUCTUATIONS

2.1 Introduction

Inland waterway ports are integral components of a nation’s transportation

system which significantly contributes to the overall economy. Currently, more

than 60% of the United States grain exports, 22% petroleum and petroleum prod-

ucts, and 20% coal are transported through inland waterway ports [140]. These

ports contribute approximately 15 billion dollars to the country’s total GDP (Gross

Domestic Product) while creating more than 250,000 job opportunities (both di-

rect and indirect) nationwide [89]. Inland waterway ports play a major role in

rural industrial and agricultural development [84]. Despite their potentiality to

contribute in the overall economy, this transportation system is still heavily un-

derutilized due to a number of reasons, such as aging infrastructure, dredging

issues, delays caused by scheduled and unscheduled closures of locks (primarily

due to maintenance activities), and many others [140]. Therefore, optimizing the

shipment planning is mandatory for the inland waterway ports not only to gain

competitive advantage over its counterparts (e.g., rail, trucks) but also to survive

in this increasingly competitive market.

10



www.manaraa.com

Inland waterway ports hold some distinguishable properties that differ them

from seaports. For instance, inland waterway ports generally cannot handle barges

drafting more than 9 feet. These ports are primarily located near smaller bodies

of water (e.g., rivers and canals), usually land intensive, and/or handle smaller

counts of larger users and a large number of smaller users [84]. Additionally, these

set of ports experience severe water level fluctuations on their channels in different

time periods of a year [139, 94, 90]. Based on the severity of this fluctuation, inland

waterway ports as well as the waterway may undergo disruptions such as draught

and flood that may severely impact or even cease the port operations for an ex-

tended period of time. These specific characteristics indicate that the optimization

models available in the literature for seaports may no longer be directly applicable

for inland waterway ports. Till now a major stream of research develops optimiza-

tion models to solve diversified seaport related problems, such as ship routing and

scheduling [29, 68], berth allocation and scheduling [27, 32, 141], inventory routing

[5], empty container repositioning [43], speed optimization [73, 141], bunker con-

sumption [145], emission consideration [141], container routing [146], and many

others. Other than optimization approaches, simulation models are also devel-

oped to solve the similar problems for the seaports (e.g., [118, 125, 121, 44]). De-

spite the abundance of seaport literature, inland ports did not receive much at-

tention from the research community. Even though a few consideration is given

to deep draft inland ports capable of handling container cargos and ships, there is
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almost no research that considers shallow draft inland ports1 that primarily handles

shallow draft vessels (e.g., barge, towboats) only. For the remaining sections of the

paper, we will refer shallow draft inland ports as inland waterway ports. Considering

their novelty in the overall transportation and economy, better understanding of

inland waterway ports is imperative to successfully design and manage a sound

and efficient supply chain network. To fulfill this need, the current study adopts

an optimization approach for showing the effects of different key managerial de-

cisions on the overall system performance.

The aim of this study is to investigate shallow draft inland port operations and

their impacts on different supply chain decisions. We propose a multi-commodity,

multi-time period Mixed-integer Linear Programming (MILP) model that opti-

mizes short-term operational decisions such as trip-wise towboat and barge as-

signment with mid-term supply chain decisions (e.g., inventory management de-

cisions) in such a way that the overall supply chain cost can be minimized. The

model realistically captures a number of factors that characterize/impact the op-

erations in a shallow draft inland port, such as towboat and barge availability,

weight and volumetric capacity restriction of barges, dredging issues, commod-

ity mix restriction, storage restrictions at ports, trip restrictions between origin-

destination ports, and many others. The output of our model provides optimal

towboat and barge assignment, amount of commodities stored and transported to

1The ports that are unable to handle barges/vessels drafting more than 9 feet are known as
shallow draft inland ports. For the ones that can handle barges/vessels drafting more than 9 feet, are
known as deep draft inland ports.
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different layers of the supply chain network so that the overall system cost can

be minimized. We realize that our proposed model is an extension of the fixed

charged, uncapacitated network flow problem which is already known to be an

NP-hard problem [74]. Therefore, solving large instances of this problem is a

challenging task. This motivates us to develop a highly customized solution ap-

proach based on the traditional Benders decomposition algorithm. To enhance the

performance of our algorithm, we create several stronger cuts, including problem-

specific valid inequalities, knapsack inequalities, pareto-optimal cuts, input order-

ing, and local branching. In addition to proposing the model, another important

contribution of this study is to apply this model to a real world case study. We

use a few states from the Southeast United States as a testing ground to visualize

and validate the modeling results. The outcome of this study provides a number

of managerial insights, such as impact of water level fluctuation on towboat and

barge selection, demand and supply changes, and barge availability on overall

system performance, which can effectively aid decision makers to design a cost-

efficient shallow draft inland waterway transportation network.

In summary, the key contributions of this paper are: (i) proposing a multi-

commodity, multi-time period MILP model formulation that facilitates the proper

management and allocation of inland waterway port operations and minimizes

the overall system cost from a supply chain viewpoint; (ii) developing an accel-

erated Benders decomposition algorithm that provides high quality solutions for

large scale problem instances in a reasonable amount of time; and (iii) presenting

13



www.manaraa.com

a real-life case study based on the data from the Southeast region of the United

States2.

The exposition of this paper is as follows. Section 2.2 provides a review of

the literature pertaining to inland waterway ports. Section 2.3 discusses the prob-

lem description and introduces the proposed mathematical model formulation.

Different enhancement techniques for the standard Benders decomposition algo-

rithm are discussed in detail in Section 2.4. Section 2.5 presents the computational

performances of different variants of the Benders decomposition algorithm, con-

ducts a real life case study, and draws a series of managerial insights. Finally, we

conclude and present avenues for future research in Section 2.6.

2.2 Literature Review

In recent years few streams of ongoing research has captured different aspects

of deep draft inland waterway port management and operations. These studies

discuss about different issues pertaining to inland waterway transportation such

as delays in locks and dams, barge and towboat routing and repositioning, berth

allocation problem, port disruption, and few others. In this section, we provide a

comprehensive overview of such previous researches.

To date, few studies analyze the performance of locks and dams in inland wa-

terway transportation network. Ting and Schonfeld [129] propose an integrated

tow control algorithm to minimize the delay between a series of locks. Wang

2This chapter has been published in Computers & Industrial Engineering [98].
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and Schonfeld [147] propose a combined simulation-optimization approach to

schedule investment decisions for lock reconstruction and rehabilitation. Ting and

Schonfeld [130] adopt a simulation-optimization approach to decide how much

capacity needs to be increased for the locks so that the costs associated with tow

delays can be minimized.

Another stream of research propose mathematical models for the barge routing

and empty container repositioning problem for the inland waterway transporta-

tion. Braekers et al. [20] optimizes barge routing and empty container reposition-

ing between a sea port and few hinterland ports. The study is extended later in [19]

to include vessel capacity and roundtrip service frequency. Marass [76] proposes a

mixed-integer linear programming (MILP) model to optimize the transport routes

of chartered container ships or tows for an inland waterway port. Alfandari et al.

[6] propose a MILP model that optimizes the planning associated with liner service

for a barge container shipping company. An et al. [9] formulate a mixed integer

nonlinear programming (MINLP) model to solve the empty container reposition-

ing shipping network design problem for an inland waterway transportation net-

work. Davidovic et al. [28] propose a guided local search technique to solve a

barge container ship routing problem.

Berth allocation problem, a prevalent issue experienced by inland waterway

ports, received some considerations from the research community. Grubivsic et

al. [50] propose an MILP model for designing a berth layout of a river port so

that the overall vessel waiting time can be minimized. Depuy et al. [30] considers
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fleet location capacity, total volume of barges, and average handling time to op-

timally allocate barge volume to different fleet locations. Guan and Cheung [51]

propose two berth allocation model formulations and use tree search procedure

with a composite heuristics for solving realistic size problem instances. Arango

et al. [11] adopt both simulation and optimization approach to model the berth

allocation problem. The authors propose a mathematical model and develop a

heuristic procedure based on genetic algorithm to solve the problem.

Realizing the need that a port may fail either due to natural (e.g., hurricane,

tornado) or human-induced (e.g., cyber-attack) disaster, few studies focus on iden-

tifying the resiliency of a deep draft inland waterway port. For instance, Baroud

et al. [13] use stochastic resilience-based component importance measures into

an optimization framework to determine the important waterway links and the

precedence of link recovery in case of a disaster. MacKenzie et al. [72] analyze the

economic impact of any sudden inland port closure by combining a simulation

and a multi-regional input-output model. Pant et al. [103] propose a dynamic,

multi-regional interdependency model to assess the effect of disruptions on the

waterway networks, including both ports and waterway links. Folga et al. [42]

propose a system level model to analyze the interdependency of failure followed

by a disaster. Most recently, Hosseini and Barker [59] propose a Bayesian network

to model the infrastructure resilience of an inland waterway port.

Some other studies related to inland waterway ports include the consideration

of port-specific economic analysis [4, 87, 151, 67], optimal dredging scheduling
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and investment decisions [86, 113, 18], and carbon emission [155, 71, 25]. In ad-

dition to these few recent studies (e.g., [39, 157, 45]) put specific focus on trans-

portation from seaport to inland port to optimize different transportation related

decisions. Fazi et al. (2015) consider the barge transportation from seaport to in-

land ports and provide a decision support system to schedule barges by modeling

the problem as a vehicle routing problem [39]. Zhen et al. (2018) also consider

transportation decisions from seaport to inland ports and provide a mixed-integer

linear programming model to address tugboat scheduling and barge assignment

problem [157]. Fu et al. (2010) illustrate the barge congestion problem and propose

a simulation approach to address this issue [45].

Another stream of research considers inland waterway ports as a tier to solve

different network design problems. Such considerations can be found in many ap-

plication areas including biomass (e.g., [109, 79, 80]), coal (e.g., [35, 47, 62]), grain

(e.g., [88, 10, 31]) supply chain design, and many others. Despite all these efforts,

very few studies have captured the true characteristics of the inland waterway

transportation (e.g., water level fluctuation, barge vs. towboat combination, barge

availability and maintenance) while solving network designing problems. Note

that the literatures included in this section are specific to deep draft inland water-

way ports. Since the shallow draft inland ports hold some distinguished features

over the deep draft inland waterway ports, the models used for deep draft inland

waterway ports cannot be directly applied to the shallow draft inland ports. To

the authors best knowledge, to date no research is available that considers shallow
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draft inland ports handling shallow draft vessels. Our work extends the existing

body of literature in multiple dimensions such as

• Proposing a new mathematical model which simultaneously optimizes the
shallow draft inland waterway port decisions and supply chain network de-
cisions. To date, no literature has captured the impact of shallow draft inland
waterway port decisions on the overall supply chain network decisions.

• Our work effectively model different characteristics which are prevalent in
the shallow draft inland waterway port system, such as barge-tow convoy
considerations, barge maintenance and availability considerations, product-
specific weight and volumetric restrictions, dredging impacts, and many oth-
ers. Very few studies in the literature attempt to optimize the barge-towboat
convoy system for container ports, but no prior attempt has been found that
simultaneously captures all these waterway issues for the inland waterway
transportation.

2.3 Problem Description and Model Formulation

This section presents a multi-commodity, multi-time period mixed-integer lin-

ear programming model for an inland waterway transportation network. The net-

work considers a set of suppliers, origin and destination ports, and customers.

Upon realization of demand for specific commodities, suppliers aim to supply the

commodities through a combination of road and waterway transportation. The

amount of product transported through the network is constrained by factors such

as supplier capacities, possible connectivity to the waterway ports, storage capac-

ities, capacity and availability of waterway transportation entities (e.g., towboat,

barge), waterway capacities, and many others. The main objective of our model is

to efficiently plan and manage the short-term operational decisions (e.g., trip-wise

towboats, barges management at the inland ports) and mid-term supply chain de-

cisions (e.g., inventory management, transportation decisions) in such a way that
18
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the overall supply chain network cost can be minimized. Figure 5.1 presents a sim-

ple illustration of an inland waterway transportation network consisting of three

suppliers of different commodities, two origin and three destination ports, and

four markets.

Figure 2.1

Illustration of an inland waterway transportation network

Consider a logistic network L = (N ,P), where N represents the set of nodes

and P represents the set of arcs. Set N consists of the set of supply sites I =

{1, 2, 3, ..., I}, set of origin ports J = {1, 2, 3, ..., J}, set of destination ports K =

{1, 2, 3, ..., K}, and a set of markets G = {1, 2, 3, ..., G} i.e., N = I ⋃J ⋃K⋃ G.
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Note that L is not a fully connected graph i.e., not all nodes are fully connected

to each other primarily due to their disperse locations. Therefore, we define two

different types of subsets Ij and Ji where Ij represents the subset of supply sites

connected to port j ∈ J and Ji to be the subset of origin ports that can receive

commodities from supply sites i ∈ I . Likewise, subsetsJk,Kj,Kg, and Gk are used

to define the appropriate interconnections between the source-destination pairs.

Let M = {1, 2, 3, ..., M} be the set of commodities that need to be transported

from supply site i ∈ I to market g ∈ G using origin port j ∈ J and destination

port k ∈ K over a predetermined set of time periods T = {1, 2, 3, ..., T}.

Let ϕmit be the amount of commodities of type m ∈ M available in supply

site i ∈ I at time period t ∈ T . Each arc (i, j) ∈ (I ,J ) carries commodities of

type m ∈ M from a supply site i to origin port j and are generally located closer

to each other. Therefore, trucks are preferred to carry commodities between arc

(i, j) ∈ (I ,J ) by incurring an unit transportation cost of cmijt. Each shipment from

the supply sites are consolidated at an origin port j ∈ J before being delivered to

the destination port k ∈ K. We assume that a set of towboats S = {1, 2, 3, ..., S}

and barges B = {1, 2, 3, ..., B} are available to carry the commodities from the

source to destination ports. Barges are flat-bottomed boats, either self-propelled

or towed by towboats or tugs, can serve as a container to transport commodities

between each source-destination pair. Each barge b ∈ B is restricted to a weight

capacity of wb and volume capacity of vb. Note that the volume restriction of

any barge is directly related to the density of any commodity {ρm}m∈M carried
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out by the barge. Towboats, another important component of inland waterway

transportation, are also flat bottomed and can be used to push one or multiple

barges in a single trip depending on their engine power capacity. We arrange set S

in such a way that towboat 1 in set S to represent the least powerful towboat while

S to represent the most powerful towboat. Based on their capabilities, we denote

δs and δs to be the maximum and minimum number of barges that can be carried

by any towboat s ∈ S in a single trip. Let ψst and ηmbt be the fixed costs associated

with using a towboat s ∈ S (e.g., operator costs) and barge b ∈ B (e.g., loading and

unloading costs) carrying commodity m ∈ M at time period t ∈ T . Further, we

define cmbsjkt to be the unit cost associated with transporting commodity m ∈ M

using barge b ∈ B of towboat s ∈ S along arc (j, k) ∈ (J ,K) at time period t ∈ T .

Finally, we assume that the commodities can be stored in any port having storage

capacity hj; ∀j ∈ J ⋃K, by incurring an unit inventory holding cost of hmjt and the

deterioration rate to carry the commodity of type m ∈ M from one time period to

the next is denoted by αm.

We also define a set of possible trips along arc (j, k) ∈ (J ,K) asNjk = {1, 2, 3, ...,

njk}. Note that due to dredging effects, the weight carrying capacity of a barge wb

and possible trips (τjkt) between each source-destination ports varies. The depth

of navigation channel near ports or any points of the waterbody in between the

source-destination ports may vary in different time periods of the year depending

upon the amount of sediment, silt, or mud accumulated in the water bed. When

this accumulation is very high in any portion of the waterway, it raises the height
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of the waterbed. Hence, the total water depth of that particular area of the naviga-

tion channel decreases. Sometimes, this reduction in water level becomes too in-

tense that it even resists the transportation of shallow draft water vessels through

it. When this condition arises between the waterway of any origin-destination

ports, barges can no longer carry commodities to their maximum design weight

wb. The effective weight carrying capacity for the barge at that situation would

be the minimum of the maximum weight capacity of a barge at the origin port

wjt, destination port wkt, and the channel in between each origin-destination ports

(j, k) ∈ (J ,K), denoted by wjkt, i.e., min{wjt, wjkt, wkt, wb}. Finally, we capture the

periodic maintenance of towboats and barges at each origin port j ∈ J at time

period t ∈ T through binary availability parameters asjt and abjt.

When commodities are carried by the towboats and barges to the destination

ports, they are unloaded and transported to markets g ∈ G using trucks by in-

curring an unit transportation cost of cmkgt. Each market g ∈ G demands dmgt

amount of commodities of type m ∈ M at time period t ∈ T . The demand for the

commodities are planned to satisfy through the inland waterway transportation.

In case if the demand cannot be satisfied through this transportation network, we

assume that another means of transport (e.g., trucks) are available to satisfy the

market demand by incurring an unit penalty cost of πmgt. The definitions of sets

and parameters used in our proposed mathematical model are listed below.

Sets:

• I : set of supply sites, i ∈ I
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• J : set of origin ports, j ∈ J

• K: set of destination ports, k ∈ K

• G: set of markets, g ∈ G

• M: set of commodities, m ∈ M

• S : set of towboats, s ∈ S

• B: set of barges, b ∈ B

• Njk: set of trips along arc (j, k) ∈ (J ,K), n ∈ Njk

• T : set of time periods, t ∈ T

• Ij: set of supply sites connected to port j, ∀j ∈ J

• Ji: set of origin ports connected to supply site i, ∀i ∈ I

• Jk: set of origin ports connected to destination port k, ∀k ∈ K

• Kj: set of destination ports connected to origin port j, ∀j ∈ J

• Kg: set of destination ports connected to market g, ∀g ∈ G

• Gk: set of markets connected to destination port k, ∀k ∈ K

Parameters:

• ϕmit: amount of product of type m ∈ M available in supply site i ∈ I at time
period t ∈ T

• ψst: fixed cost of using towboat s ∈ S at time period t ∈ T

• ηmbt: fixed cost for loading and unloading commodity m ∈ M in barge b ∈ B
at time period t ∈ T

• cme f t: unit cost of transporting commodity m ∈ M along arc (e, f ) ∈ (I ⋃K,J ⋃ G)
at time period t ∈ T

• cmbsjkt: unit cost of transporting commodity m ∈ M using barge b ∈ B of
towboat s ∈ S along arc (j, k) ∈ (J ,K) at time period t ∈ T

• hj: commodity storage capacity at port j ∈ J ⋃K
• dmgt: demand for commodity of type m ∈ M in market g ∈ G at time period

t ∈ T
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• αm: deterioration of commodity m ∈ M

• asjt, abjt: binary availability of towboat and barge

• δs, δs: maximum/minimum number of barges to carry by towboat s ∈ S

• wjt, wjkt, wkt: maximum weight capacity at port j ∈ J ⋃K and the channel
between port (j, k) ∈ (J ,K) at time period t ∈ T . This weight depends on
the depth of the waterway and should not exceed the minimal water-level
between the origin-destination ports

• ρm: density of commodity m ∈ M

• vb: volume capacity of barge b ∈ B

• wb: weight capacity of a barge b ∈ B

• πmgt: unit penalty cost of not satisfying demand for commodity m ∈ M in
market g ∈ G at time period t ∈ T

• hmjt: unit inventory holding cost for commodity m ∈ M in port j ∈ J ⋃K
at time period t ∈ T

• θjt: total number of barges available in port j ∈ J at time period t ∈ T

• τjkt: maximum number of trips that can be made along arc (j, k) ∈ (J ,K) at
time period t

Decision Variables:

• Y1
snjkt: 1 if a towboat s ∈ S is used in arc (j, k) ∈ (J ,K) for trip n ∈ Njk at

time period t ∈ T ; 0 otherwise

• Y2
mbsjt: 1 if commodity m ∈ M is carried on barge b ∈ B of towboat s ∈ S

from port j ∈ J at time period t ∈ T ; 0 otherwise

• Xme f t: amount of commodities of type m ∈ M transported along arc (e, f ) ∈
(I ⋃K,J ⋃ G) at time period t ∈ T

• Xmbsnjkt: amount of commodities of type m ∈ M transported using barge
b ∈ B of towboat s ∈ S of trip n ∈ Njk along arc (j, k) ∈ (J ,K) at time
period t ∈ T

• Hmjt: amount of commodities of type m ∈ M stored in port j ∈ J ⋃K at
time period t ∈ T
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• Umgt: amount of commodities of type m ∈ M shortage in market g ∈ G at
time period t ∈ T

We now introduce the following decision variables for our proposed mathe-

matical model formulation. The first set of decision variables Y1 := {Y1
snjkt|∀s ∈

S , n ∈ Njk, j ∈ J , k ∈ Kj, t ∈ T } and Y2 := {Y2
mbsjt|∀m ∈ M, b ∈ B, s ∈ S , j ∈

J , t ∈ T } determine which towboat to use between any origin-destination pair in

a given time period and which barge to use for carrying any particular product at

any given origin port, respectively, i.e.,

Y1
snjkt =


1 if a towboat s is used in arc (j, k) ∈ (J ,K) for trip n at time period t

0 otherwise;

Y2
mbsjt =


1 if barge b connected to towboat s is used to carry commodity m

at port j in time period t

0 otherwise;

For notation simplicity, we define Y as Y := Y1⋃Y2. Additionally, we intro-

duce X1 := {Xme f t|∀m ∈ M, (e, f ) ∈ (I ⋃K,J ⋃ G), t ∈ T } to denote the amount

of commodities of type m ∈ M transported along arc (e, f ) ∈ (I ⋃K,J ⋃ G) at

time period t ∈ T and X2 := {Xmbsnjkt|∀m ∈ M, b ∈ B, s ∈ S , n ∈ Njk, (j, k) ∈

(J ,K), t ∈ T } to denote the amount of commodities of type m ∈ M transported

using barge b ∈ B of towboat s ∈ S of trip n ∈ Njk along arc (j, k) ∈ (J ,K)

at time period t ∈ T and X := X1⋃X2. We also introduce decision variables
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H := {Hmjt|∀m ∈ M, j ∈ J ⋃K, t ∈ T } to identify the amount of commodities

of type m ∈ M disjointly stored in both origin and destination port j ∈ J ⋃K
at time period t ∈ T . The amount of unsatisfied demand of any commodity

m ∈ M in market g ∈ G at any given time period t ∈ T is determined by variables

U := {Umgt|∀m ∈ M, g ∈ G, t ∈ T }. With these variables, we now introduce the

inland waterway port management optimization problem [IMP] as follows,

[IMP] Minimize
Y,X,H,U

∑
t∈T

(
∑
s∈S

∑
n∈Njk

∑
j∈J

∑
k∈Kj

ψstY1
snjkt + ∑

m∈M

(
∑
b∈B

∑
s∈S

∑
j∈J

ηmbtY2
mbsjt +

∑
(e, f )∈(I ⋃K,J ⋃ G) cme f tXme f t + ∑

b∈B
∑
s∈S

∑
n∈Njk

∑
(j,k)∈(J ,K)

cmbsjktXmbsnjkt

+ ∑
j∈J ⋃K hmjtHmjt + ∑

g∈G
πmgtUmgt

))
(2.1)

subject to

∑
j∈Ji

Xmijt ≤ ϕmit∀m ∈ M, i ∈ I , t ∈ T (2.2)

∑
i∈Ij

Xmijt + (1− αm)Hmj,t−1 = ∑
b∈B

∑
s∈S

∑
n∈Njk

∑
k∈Kj

Xmbsnjkt + Hmjt

∀m ∈ M, j ∈ J , t ∈ T (2.3)

∑
b∈B

∑
s∈S

∑
n∈Njk

∑
j∈Jk

Xmbsnjkt + (1− αm)Hmk,t−1 = ∑
g∈Gk

Xmkgt + Hmkt

∀m ∈ M, k ∈ K, t ∈ T (2.4)

∑
k∈Kg

Xmkgt + Umgt = dmgt∀m ∈ M, g ∈ G, t ∈ T (2.5)

∑
m∈M

Hmjt ≤ hj∀j ∈ J
⋃
K, t ∈ T (2.6)
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∑
m∈M

Y2
mbsjt ≤ 1∀b ∈ B, s ∈ S , j ∈ J , t ∈ T (2.7)

∑
s∈S

Y1
snjkt ≤ 1∀n ∈ Njk, j ∈ J , k ∈ Kj, t ∈ T (2.8)

∑
n∈Njk

∑
k∈Kj

δsY
1
snjkt ≤ ∑

m∈M
∑
b∈B

Y2
mbsjt ≤ ∑

n∈Njk

∑
k∈Kj

δsY1
snjkt

∀s ∈ S , j ∈ J , t ∈ T (2.9)

∑
n∈Njk

Xmbsnjkt ≤ min{wjt, wjkt, wkt, wb}Y2
mbsjt ∀m ∈ M,

b ∈ B, s ∈ S , j ∈ J , k ∈ Kj, t ∈ T (2.10)

∑
n∈Njk

∑
k∈Kj

(Xmbsnjkt

ρm

)
≤ vbY2

mbsjt∀m ∈ M, b ∈ B, s ∈ S , j ∈ J , t ∈ T (2.11)

∑
s∈S

∑
n∈Njk

Y1
snjkt ≤ τjkt∀j ∈ J , k ∈ Kj, t ∈ T (2.12)

∑
m∈M

∑
b∈B

∑
s∈S

Y2
mbsjt ≤ θjt∀j ∈ J , t ∈ T (2.13)

∑
n∈Njk

∑
k∈Kj

Y1
snjkt ≤ asjt∀s ∈ S , j ∈ J , t ∈ T (2.14)

∑
m∈M

∑
s∈S

Y2
mbsjt ≤ abjt∀b ∈ B, j ∈ J , t ∈ T (2.15)

Y2
mbsjt ∈ {0, 1}∀m ∈ M, b ∈ B, s ∈ S , j ∈ J , t ∈ T (2.16)

Y1
snjkt ∈ {0, 1}∀s ∈ S , n ∈ Njk, j ∈ J , k ∈ Kj, t ∈ T (2.17)

Xmijt, Xmjkbsnt, Xmkgt, Hmjt, Hmkt, Umgt ∈ R+ (2.18)

In [IMP], the objective function minimizes the overall logistics cost for the

inland waterway transportation network. The objective function consists of six

terms: the first and second term represent, respectively, the fixed costs associated

with using towboats, and loading and unloading commodities into the barges.

The third term in the objective function represents the total transportation cost
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associated with transporting any commodity to and from any origin-destination

port using trucks. The costs incurred due to transporting commodities between

each origin-destination ports are captured by the fourth term in the objective func-

tion. The last two terms in the objective function specify the total storage cost and

penalty cost due to unsatisfied demand.

Constraints (2.2) indicate that the amount of commodity of type m ∈ M trans-

ported from a supply site i ∈ I at any given time period t ∈ T is restricted by the

supply capacity ϕmit. Constraints (2.3) and (2.4) are the flow balance constraints

which ensure that at any given time period t ∈ T the amount of commodity

of type m ∈ M can be either shipped or stored in a source or destination port

j ∈ J ⋃K. Constraints (2.5) indicate that the demand for commodity m ∈ M in

market g ∈ G at any given time t ∈ T can be either completely or partially sat-

isfied through the inland waterway transportation network. If partially satisfied,

we assume that the balance commodities can be satisfied though external sources

via a higher penalty cost πmgt. Constraints (2.6) restrict the storage quantity of

a given commodity m ∈ M at port j ∈ J ⋃K to its maximum storage capacity

hj. The commodity mix restriction is handled by constraints (2.7) which indicate

that only one commodity of type m ∈ M can be loaded in any barge b ∈ B of

a given towboat s ∈ S . Constraints (2.8) indicate that only one towboat s ∈ S

can be used in trip n ∈ Njk between each source-destination pair at a given time

period t ∈ T . Constraints (2.9) set restrictions on the maximum (δs) and minimum

(δs) number of barges that can be connected with any particular towboat s ∈ S in
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port j ∈ J at time period t ∈ T . The dredging issues are captured in constraints

(2.10). These constraints indicate that at any given time period t ∈ T a barge b ∈ B

can only carry the minimum of {wjt, wjkt, wkt, wb} amount of commodity between

each origin-destination port. The volumetric capacity restriction of a barge b ∈ B

is handled by constraints (2.11). Constraints (2.12) restrict the maximum num-

ber of possible trips (τjkt) between each origin-destination port. Constraints (2.13)

indicate the maximum availability of barges (θjt) in port j ∈ J at time period

t ∈ T . Barges and towboats can go for periodic maintenance. These are handled

in constraints (2.14) and (2.15) via binary availability parameters asjt and abjt, re-

spectively. Finally, constraints (2.16) and (2.17) are the integrality constraints and

(2.18) are the standard non-negativity constraints, respectively.

2.4 Solution Approach

By setting |M| = 1, |S| = 1, |B| = 1, |Njk| = 1, |T | = 1 i.e., a single commod-

ity, a single towboat, a single barge, a single trip, and a single time-period, problem

[IMP] can be simplified to a special case of a fixed-charge network flow problem

which is already known to be an NP-hard problem [74]. Therefore, commercial

solvers, such as CPLEX/GUROBI, can only able to solve small scale problem in-

stances of such problems. Our problem [IMP] involves solving a mixed-integer

linear programming model which can be considered very challenging from so-

lution standpoint depending on the size of sets |M|, |I|, |J |, |K|, |G|, |B|, |S|,

|Njk|, and |T |. To alleviate this problem, in this section, we first employ a well-

29



www.manaraa.com

known partitioning method, commonly referred to as Benders decomposition algo-

rithm [15, 83], to solve our proposed optimization model [IMP]. Later in this sec-

tion, we demonstrate multiple enhancement techniques to accelerate the perfor-

mance of the basic Benders decomposition algorithm and to solve problem [IMP]

efficiently. The techniques used to enhance the Benders decomposition algorithm

include problem-specific valid-inequalities, input ordering, pareto-optimal cut,

knapsack inequalities, and local branching procedure. The aim is to produce high-

quality feasible solutions for solving realistic-size instances of problem [IMP] in a

reasonable amount of time.

2.4.1 Benders Decomposition Algorithm

In Benders decomposition, the original problem can be decomposed into two

subproblems: an integer master problem and a linear subproblem. Before introduc-

ing the subproblems, let us first present the underlying Benders reformulation for

model [IMP] as follows:

Minimize
{

∑
t∈T

(
∑
s∈S

∑
n∈Njk

∑
j∈J

∑
k∈Kj

ψstY1
snjkt + ∑

m∈M
∑
b∈B

∑
s∈S

∑
j∈J

ηmbtY2
mbsjt

)
+

[SP](X,H,U |Ŷ1, Ŷ2
)
}

(2.19)

subject to (2.2)-(2.18). We represent [SP](X,H,U|Ŷ1, Ŷ2
) as Benders subproblem,

which is presented below. For given values of Ŷ1 := {Y1
snjkt|s ∈ S , n ∈ Njk, j ∈

J , k ∈ K, t ∈ T } and Ŷ2 := {Y2
mbsjt|m ∈ M, b ∈ B, s ∈ S , j ∈ J , t ∈ T } which

satisfy integrality restrictions (2.16) and (2.17), problem [IMP] can be deduced to
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the following primal subproblem involving only continuous variables X, H, U as fol-

lows:

[SP] (X,H,U|Ŷ1, Ŷ2
)Minimize

X,H,U
∑
t∈T

∑
m∈M

(
∑

j∈J ⋃K hmjtHmjt + ∑
(e, f )∈(I ⋃K,J ⋃ G)cme f tXme f t

+ ∑
b∈B

∑
s∈S

∑
n∈Njk

∑
(j,k)∈(J ,K)

cmbsjktXmbsnjkt + ∑
g∈G

πmgtUmgt

)
(2.20)

subject to constraints (2.2)-(2.6), (2.10)-(2.11), and (2.18). We let µµµ = {µmit ≥

0|∀m ∈ M, i ∈ I , t ∈ T }, ϑϑϑ = {ϑmjt|∀m ∈ M, j ∈ J , t ∈ T }, and ζζζ = {ζmkt|∀m ∈

M, k ∈ K, t ∈ T } be the vector of the dual variables associated with constraints

(2.2)-(2.4); εεε = {εmgt|∀m ∈ M, g ∈ G, t ∈ T } be the dual variables for constraints

(2.5); κκκ = {κjt ≥ 0|∀j ∈ J , t ∈ T } and ιιι = {ιkt ≥ 0|∀k ∈ K, t ∈ T } be the dual

variables for constraints (2.6); and ξξξ = {ξmbsjkt ≥ 0|∀m ∈ M, b ∈ B, s ∈ S , j ∈

J , k ∈ K, t ∈ T } and χχχ = {χmbsjt ≥ 0|∀m ∈ M, b ∈ B, s ∈ S , j ∈ J , t ∈ T } be the

vector of the dual variables associated with constraints (2.10)-(2.11). We present

the dual of the primal subproblem [SP], referred to as [DP], as follows:

[DP] Maximize ∑
t∈T

(
∑

m∈M

(
∑
g∈G

dmgtεmgt −∑
i∈I

ϕmitµmit − ∑
b∈B

∑
s∈S

∑
j∈J

(
∑

k∈K

min{wjt, wjkt, wkt, wb}Ŷ2
mbsjtξmbsjkt + vbŶ2

mbsjtχmbsjt

))
− ∑

j∈J
hjκjt

− ∑
k∈K

hkιkt

)
(2.21)
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subject to

−µmit + ϑmjt ≤ cmijt ∀m ∈ M, i ∈ I , j ∈ J , t ∈ T (2.22)

−ϑmjt + ζmkt − ξmbsjkt −
χmbsjt

ρm
≤ cmbsjkt ∀m ∈ M, b ∈ B, s ∈ S , j ∈ J ,

k ∈ Kj, t ∈ T (2.23)

(1− αm)ϑmj,t+1 − ϑmjt − κjt ≤ hmjt ∀m ∈ M, j ∈ J , t ∈ T (2.24)

(1− αm)ζmk,t+1 − ζmkt − ιkt ≤ hmkt ∀m ∈ M, k ∈ K, t ∈ T (2.25)

−ζmkt + εmgt ≤ cmkgt ∀m ∈ M, k ∈ K, g ∈ G, t ∈ T(2.26)

εmgt ≤ πmgt ∀m ∈ M, g ∈ G, t ∈ T (2.27)

µmit, κjt, ιkt, ξmbsjkt, χmbsjt ∈ R+ (2.28)

ϑmjt, ζmkt, εmgt ∈ R (2.29)

Now, in the underlying Benders reformulation, we can introduce an additional

free variable θ and define the following Benders Master problem [MP]:

[MP] Minimize
Y,θθθ

∑
t∈T

(
∑
s∈S

∑
n∈Njk

∑
j∈J

∑
k∈Kj

ψstY1
snjkt +

∑
m∈M

∑
b∈B

∑
s∈S

∑
j∈J

ηmbtY2
mbsjt

)
+ θ (2.30)

subject to constraints (2.7)-(2.9), (2.12)-(2.17), and

θ ≥ ∑
t∈T

(
∑

m∈M

(
∑
g∈G

dmgtεmgt −∑
i∈I

ϕmitµmit − ∑
b∈B

∑
s∈S

∑
j∈J

(
vbY2

mbsjtχmbsjt

+ ∑
k∈K

min{wjt, wjkt, wkt, wb}Y2
mbsjtξmbsjkt

))
− ∑

j∈J
hjκjt − ∑

k∈K
hkιkt

)
∀(µ, ε, χ, ξ, κ, ι) ∈ PD (2.31)
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Constraints (2.31) are referred to as optimality cut constraints where PD is the

set of extreme points in the feasible region of [DP]. The objective function value of

[DP] bounds the variable θ from above i.e.,

θ ≥ ∑
t∈T

(
∑

m∈M

(
∑
g∈G

dmgtεmgt −∑
i∈I

ϕmitµmit − ∑
b∈B

∑
s∈S

∑
j∈J

(
vbY2

mbsjtχmbsjt

+ ∑
k∈K

min{wjt, wjkt, wkt, wb}Y2
mbsjtξmbsjkt

))
− ∑

j∈J
hjκjt − ∑

k∈K
hkιkt

)
∀(µ, ε, χ, ξ, κ, ι) ∈ PD

Note that, no feasibility cut is added in [MP] since for any feasible solutions of

Y, constraints (2.5) ensure that primal subproblem [SP](X,H,U|Ŷ1, Ŷ2
) will always

remain feasible. Moreover, since parameters cmijt, cmbsjkt, hmjt, hmkt, cmkgt, and

πmgt are finite, any feasible solution of [SP](X,H,U|Ŷ1, Ŷ2
) must be bounded. By

strong duality theory, we can state that the dual subproblem [DP] will also remain

feasible and bounded.

The overall Benders decomposition algorithm is outlined below. Let UBr and

LBr be an upper and lower bound for the original problem [IMP] which are ob-

tained during the Benders decomposition algorithm at each iteration r. We also

define zr
MAS as follows:

zr
MAS = ∑

t∈T

(
∑
s∈S

∑
n∈Njk

∑
j∈J

∑
k∈Kj

ψstŶ1r
snjkt + ∑

m∈M
∑
b∈B

∑
s∈S

∑
j∈J

ηmbtŶ2r
mbsjt

)
(2.32)
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In Benders decomposition algorithm, we iteratively solve master problem [MP]

to obtain the solutions {Ŷ1r
snjkt}s∈S ,n∈Njk,j∈J ,k∈K,t∈T and {Ŷ2r

mbsjt}m∈M,b∈B,s∈S ,j∈J ,t∈T .

The objective function value obtained from solving [MP] provides a valid lower

bound for the original problem [IMP], which is denoted by zr
MP. We then fix the

values of {Ŷ1r
snjkt} and {Ŷ2r

mbsjt} to solve the dual subproblem [DP]. In each itera-

tion r of the Benders decomposition algorithm, the summation of zr
MAS (obtained

from the master problem) and zr
SUB (obtained from the subproblem) provides a

valid upper bound for the original problem [IMP]. The overall Benders decompo-

sition algorithm is terminated when the gap between the upper and lower bound

falls below a pre-specified threshold limit ε; otherwise, the optimality cut (2.31)

is updated and added to the master problem [MP]. Note that the Benders refor-

mulation contains an exponential number of constraints that can been handled

through a cutting plane approach. Let P r
D be the restricted set of extreme points

of D at iteration r. Thus, the relaxed master problem [MP] is solved containing

a small subset of the constraints in (2.31) i.e., P r
D ⊂ PD and gradually add them

until the gap between the upper and lower bound falls below the threshold limit

ε. The pseudo-code for the basic Benders decomposition algorithm is provided in

Algorithm 1.

2.4.2 Enhancement of Benders Decomposition Algorithm
2.4.2.1 Valid inequalities

By utilizing the special structure of our problem [IMP], we generate a number

of valid inequalities that can be used to accelerate the performance of the over-
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all Benders decomposition algorithm. The following set of valid inequalities are

added in each iteration of the Benders master problem [MP]:

• The following surrogate constraints (2.33) are added in each iteration of the
Benders master problem [MP] which provide a lower bound on the number
of barges required to satisfy commodity demand m ∈ M at time period
t ∈ T . Here, we can initialize the value of σ between 0.0 to 1.0. When σ = 1.0,
constraints (2.33) ensure that all the demand is required to be satisfied from
the inland waterway port network.

∑
b∈B

∑
s∈S

∑
j∈J

Y2
mbsjtwb ≥ ∑

g∈G
σdmgt ∀m ∈ M, t ∈ T (2.33)

• Symmetries may result during the selection of the barges since all the barges
are of similar capacities. To alleviate this problem, the following lexicographic
ordering constraints [122, 63] ((2.34) and (2.35)) are added in each iteration of
the Benders master problem [MP] that set priorities by which the solver can
select the barges. It is expected that such priorities will break the duplica-
tions caused by the barge selection symmetry and accelerate the performance
of the branch-and-bound process.

Y2
1,b−1,sjt ≥ Y2

1bsjt ∀b ∈ B \ {1}, s ∈ S , j ∈ J , t ∈ T(2.34)
m

∑
p=1

2(m−p)Y2
p,b−1,sjt ≥

m

∑
p=1

2(m−p)Y2
pbsjt ∀m ∈ M, b ∈ B \ {1}, s ∈ S ,

j ∈ J , t ∈ T (2.35)

• In addition to handling symmetries that can arise while selecting barges, we
also handle the possible symmetries that may arise between same type of
towboats. Let S ′e be the subset of towboats belongs to the same type i.e.,
S ′e ⊂ S and s

′
e ∈ S

′
e, where s

′
e represents a set of non-decreasing order of the

members belongs to S ′e. The following lexicographical ordering constraints
((2.36) and (2.37)) are applied for each S ′e to determine the priority of utilizing
towboats of the same type.

Y1
s′e−1,njkt

≥ Y1
s′enjkt

∀s
′
e ∈ S

′
e \ {1}, n ∈ Njk, j ∈ J , k ∈ K, t ∈ T(2.36)

ψs′e−1,tY
1
s′e−1,njkt

≥ ψs′etY
1
s′enjkt
∀s
′
e ∈ S

′
e \ {1}, n ∈ Njk, j ∈ J , k ∈ K, t ∈ T(2.37)

• The following set of constraints, (2.38) and (2.39), set a lower bound on the
number of barges that are required to satisfy the demand between time in-
terval [t1, t2] where t2 ≥ t1. These constraints indicate that if the sum of the
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demands over period [t1, t2] is greater than or equal to the maximum pos-
sible inventory held (hk) or initial inventory (Hmk0), then there has to be at
least a certain number of barges used in that time interval:

∑
b∈B

∑
s∈S

∑
j∈J

t2

∑
t=t1

Y2
mbsjt ≥


∑g∈G

t2
∑

t=t1

σdmgt −∑k∈K hk

wb


∀m ∈ M, (t1, t2) ∈ T , t2 ≥ t1(2.38)

∑
b∈B

∑
s∈S

∑
j∈J

t2

∑
t=t1

Y2
mbsjt ≥


∑g∈G

t2
∑

t=t1

σdmgt −∑k∈K Hmk0

wb


∀m ∈ M, (t1, t2) ∈ T , t2 ≥ t1(2.39)

• Likewise, constraints (2.40) and (2.41) set lower bounds on the number of
towboats to be used between any time interval [t1, t2] where t2 ≥ t1. Here, δs
represents the capacity of the most powerful towboat S.

∑
s∈S

∑
n∈N

∑
j∈J

∑
k∈K

t2

∑
t=t1

Y1
snjkt ≥


∑m∈M∑g∈G

t2
∑

t=t1

σdmgt −∑k∈K hk

wbδs


∀(t1, t2) ∈ T , t2 ≥ t1 (2.40)

∑
s∈S

∑
n∈N

∑
j∈J

∑
k∈K

t2

∑
t=t1

Y1
snjkt ≥


∑m∈M

(
∑g∈G

t2
∑

t=t1

σdmgt −∑k∈K Hmk0

)
wbδs


∀(t1, t2) ∈ T , t2 ≥ t1 (2.41)

2.4.2.2 Knapsack inequalities

Santoso et al. [119] show that, if the Benders decomposition algorithm gen-

erates a good upper bound, adding a knapsack inequality of the following form

along with the optimality cut constraint (2.31) can significantly impact the solution

quality obtained from the Benders master problem. Further, the state-of-the-art
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solvers, such as CPLEX, GUROBI, can derive a variety of valid inequalities from

the knapsack inequality [119]. These derived inequalities may help to expedite the

convergence of the overall Benders decomposition algorithm. Let UBr denote the

best known upper bound obtained during the first r iterations of the Benders decom-

position algorithm. The following knapsack inequality can be added to [MP] in

iteration r + 1:

UBr ≥ ∑
t∈T

(
∑

m∈M

(
∑
g∈G

dmgtεmgt −∑
i∈I

ϕmitµmit − ∑
b∈B

∑
s∈S

∑
j∈J

(
vbY2

mbsjtχmbsjt

+ ∑
k∈K

min{wjt, wjkt, wkt, wb}Y2
mbsjtξmbsjkt

))
− ∑

j∈J
hjκjt − ∑

k∈K
hkιkt

+ ∑
s∈S

∑
n∈Njk

∑
j∈J

∑
k∈Kj

ψstY1
snjkt + ∑

m∈M
∑
b∈B

∑
s∈S

∑
j∈J

ηmbtY2
mbsjt

)
(2.42)

Likewise, let LBr denote the best known lower bound obtained till iteration r of

the Benders decomposition algorithm. To speed up the branch-and-bound proce-

dure of the solver, the following inequality can be added in each iteration of the

Benders master problem [MP] starting from iteration r + 1:

LBr ≤ ∑
t∈T

(
∑
s∈S

∑
n∈Njk

∑
j∈J

∑
k∈Kj

ψstY1
snjkt + ∑

m∈M
∑
b∈B

∑
s∈S

∑
j∈J

ηmbtY2
mbsjt

)
+ θ(2.43)

2.4.2.3 Pareto-optimal cuts

Pareto-optimal cuts, first introduced by Magnanti and Wong [74], are added to

the master problem to improve the convergence of the Benders decomposition al-

gorithm. In each iteration of the Benders decomposition algorithm, these cuts are
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generated in such a way that they will be stronger and non-dominated over the

cuts generated previously. However, this technique heavily relied on the solu-

tion obtained from the dual subproblem. To overcome this problem, Papadakos

[104] proposed an approach that generates subproblem independent pareto-optimal

cuts, commonly known as the modified Magnanti-Wong (MMW) pareto-optimal cut.

In this research, we have used this subproblem independent pareto-optimal cut as

proposed by Papadakos [104]. We refer to this subproblem as [DP(MMW)].

Let YLP be the polyhedron defined by (2.7)-(2.9)and (2.12)-(2.15), 0 ≤ {Y2
mbsjt}m∈M,

b∈B,s∈S ,j∈J ,t∈T ≤ 1 and 0 ≤ {Y1
snjkt}s∈S ,n∈Njk,j∈J ,k∈K,t∈T ≤ 1. Let ri(YLP) denote

the relative interior of YLP. A Pareto-optimal cut can be obtained by solving the

following subproblem where Y2(core)
mbsjt ∈ ri(YLP); ∀m ∈ M, b ∈ B, s ∈ S , j ∈ J , t ∈

T .

[DP(MMW)] Maximize ∑
t∈T

(
∑

m∈M

(
∑
g∈G

dmgtεmgt −∑
i∈I

ϕmitµmit − ∑
b∈B

∑
s∈S

∑
j∈J(

∑
k∈K

min{wjt, wjkt, wkt, wb}Y
2(core)
mbsjt ξmbsjkt + vbY2(core)

mbsjt χmbsjt

))
− ∑

j∈J
hjκjt − ∑

k∈K
hkιkt

)
(2.44)
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subject to

−µmit + ϑmjt ≤ cmijt ∀m ∈ M, i ∈ I , j ∈ J , t ∈ T (2.45)

−ϑmjt + ζmkt − ξmbsjkt −
χmbsjt

ρm
≤ cmbsjkt∀m ∈ M, b ∈ B, s ∈ S , j ∈ J ,

k ∈ Kj, t ∈ T (2.46)

(1− αm)ϑmj,t+1 − ϑmjt − κjt ≤ hmjt ∀m ∈ M, j ∈ J , t ∈ T (2.47)

(1− αm)ζmk,t+1 − ζmkt − ιkt ≤ hmkt ∀m ∈ M, k ∈ K, t ∈ T (2.48)

−ζmkt + εmgt ≤ cmkgt ∀m ∈ M, k ∈ K, g ∈ G, t ∈ T(2.49)

εmgt ≤ πmgt ∀m ∈ M, g ∈ G, t ∈ T (2.50)

µmit, κjt, ιkt, ξmbsjkt, χmbsjt ∈ R+ (2.51)

ϑmjt, ζmkt, εmgt ∈ R (2.52)

In [DP(MMW)], {Y2(core)
mbsjt }m∈M,b∈B,s∈S ,j∈J ,t∈T denote the core points which we

initialized as Y2(core)
mbsjt ← 1; ∀m ∈ M, b ∈ B, s ∈ S , j ∈ J , t ∈ T [104, 105].

Later, in each iteration of the Benders decomposition algorithm, we update the

core points as follows: Y2(core)
mbsjt = τY2(core)

mbsjt + (1− τ)Ŷ2
mbsjt; ∀m ∈ M, b ∈ B, s ∈

S , j ∈ J , t ∈ T . Here, Ŷ2
mbsjt refers to the solution obtained from solving the

Benders master problem. Depending on the results of multiple experimentation,

authors suggest to set τ = 0.5 which provides the best empirical results for [IMP].

The generation of pareto-optimal cuts require solving two linear subproblems

in one iteration, i.e., use {Ŷ2
mbsjt}m∈M,b∈B,s∈S ,j∈J ,t∈T to solve [DP] and then use

{Y2(core)
mbsjt }m∈M,b∈B,s∈S ,j∈J ,t∈T to solve [DP(MMW)]. Papadakos [104] claimed that

this modified Magnanti-Wong pareto-optimal cut is independent from the solutions
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of the dual subproblem [DP] which results the Benders master problem to be one

step closer to the optimal solution from the very first iteration.

2.4.2.4 Input ordering

Jans and Desrosiers [64] showed that the order at which the input data are

loaded into a model can have a major impact on the Linear Programming (LP) re-

laxation, node exploration, and ultimately to the solution time of the overall prob-

lem. In this research, we use this concept to rank the destination ports based on their

potentiality to serve customer demands throughout the entire planning horizon.

Essentially, the ports with high potential for customer demands are ranked first in

the input file in an attempt to quickly obtain a lower bound for the Benders mas-

ter problem [MP]. Since the demand for different commodities dmgt are set on the

markets g ∈ G rather than the destination ports, we made a demand projection at

each destination port k ∈ K based on the arcs connecting them to the markets (Gk).

Figure 2.2 is used to provide a numerical illustration of this projection which is

consisting of four destination ports (k1-k4) and twelve markets (g1-g12). The arrow

head represents all possible arcs between each source to destination pairs. Based

on Figure 2.2, the potential demand for each destination port k ∈ K can be cal-

culated by summing the demand for all commodities in the markets connected to

them during the entire planning horizon. For instance, a demand projection for

port k2 can be made as follows: ∑m∈M
g7

∑
g=g4

∑t∈T dmgt = 12, 000 tons. We use this

approach to project the demand for the remaining ports. Based on this projected

40



www.manaraa.com

demand, we sort all destination ports k ∈ K in a descending order and place them

accordingly in the input file.

Figure 2.2

Customer demand sorting

2.4.2.5 Local Branching

The earlier iterations of the Benders decomposition algorithm suffers from slow

convergence i.e., the gap between the upper and lower bound drops slowly even

after the incorporation of pareto-optimality cuts. To alleviate this problem, we uti-

lize local branching procedure, initially proposed by Fischetti and Lodi [41] and later

utilized by Rei et al. (2009) [116] under the classical Benders framework, in an at-

tempt to accelerate the performance of the Benders master problem [MP]. The core

concept lies in local branching is to divide the entire feasible region into a series
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of smaller subproblems which can be solved by any generic solver (e.g., GUROBI,

CPLEX) within an acceptable time limit. Below we provide a brief discussion of

the local branching procedure.

The local branching procedure begins with a feasible solution Y of [MP] and

a positive integer parameter kv. This feasible solution serves as a reference point

to create local branching subproblems. Let Ȳ1 be an optimal solution of the master

problem [MP]. We can divide the feasible region of [MP] into the following two

reduced subproblems.

∆(Y, Ȳ1
) ≤ kv ∨ ∆(Y, Ȳ1

) ≥ kv + 1 (2.53)

We use GUROBI to solve the reduced subproblem of [MP] which is created by

adding the left branching constraint presented in the first part of constraint (2.53).

This reduced subproblem is referred to as left branching subproblem. The succinct

representation of constraint (2.53) can be expanded as follows:

∆(Y, Ȳ1
) := ∑

(s,n,j,k,t) 6∈yl
s

Y1
snjkt + ∑

(s,n,j,k,t)∈yl
s

(1−Y1
snjkt) +

∑
(m,b,s,j,t) 6∈yl

m

Y2
mbsjt + ∑

(m,b,s,j,t)∈yl
m

(1−Y2
mbsjt) ≤ kv (2.54)

where yl
s and yl

m are defined as follows: yl
s = {Ŷ1

snjkt = 1|∀s ∈ S , n ∈ Njk, j ∈

J , k ∈ K, t ∈ T } and yl
m = {Ŷ2

mbsjt = 1|∀m ∈ M, b ∈ B, s ∈ S , j ∈ J , t ∈ T }.

The solutions of Ŷ1
snjkt and Ŷ2

mbsjt obtained by solving [MP] at iteration l, are used

to construct constraint (2.54), which are then applied to iteration l + 1. Let,Ȳ2 be a

solution of the local branching subproblem which can be obtained by setting a time
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limit TL and optimality gap εk. Typically, the value of kv is set to a small number

which will allow local branching to quickly explore different feasible regions of

[MP]. After solving the local branching subproblem, depending on the status of

the optimizer one of the following cases might arise.

• Case 1: If an optimal solution is found for the current local branching sub-
problem within a predefined timelimit TL and optimality gap εk, the left
branching constraint should be replaced by the right branching constraint
i.e., ∆(Y, Ȳ1

) ≥ kv + 1. At this point, we will update the reference point Ȳ1

to Ȳ2 and apply the branching condition based on this new reference point.
Therefore, the new left branching condition would be ∆(Y, Ȳ2

) ≤ kv.

• Case 2: The second case arises when the current subproblem is proven in-
feasible. In this case, we replace the left branching constraint with the right
branching constraint i.e., ∆(Y, Ȳ1

) ≥ kv + 1. In this situation, we apply a
diversification procedure (dv) through increasing the size of the feasible so-
lution region by dkv/2e i.e., (kv + dkv/2e). The local branching procedure is
then continued with this new extended solution space.

• Case 3: If the feasible solution of the current subproblem is improved, but
not optimal, at the end of the time limit TL, the left branching constraint will
be eliminated without adding the right branching constraint. Moreover, a
tabu constraint ∆(Y, Ȳ2

) ≥ 1 will be added to remove Ȳ2 from the current
subproblem. Next, we create a new subproblem by adding the left branch-
ing constraint with the new reference point ∆(Y, Ȳ2

) ≤ kv and the process
continues.

• Case 4: In this case, we check if the subproblem exceeds the predefined time
limit TL without improving the objective function value. If yes, the right
hand size of the left branching constraint will be decreased by one, i.e., kv− 1,
and the tabu cut will be added to ensure that Ȳ2 will not be considered in
further. We then solve the current subproblem in an attempt to find a better
solution. If no improved solution is found, we re-operate the diversification
procedure that will enlarge the size of the feasible region.

Note that at the beginning of the local branching procedure, we add the tabu

constraint ∆(Y, Ȳ1
) ≥ 1 in [MP] to ensure that the previously explored solutions

are not repeated in the current iteration. Let Ndiv and itermax be the maximum
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number of diversification and iteration, respectively, for the local branching pro-

cedure. We further denote Ȳh to store the hth feasible solution obtained during any

iteration of the local branching procedure. At the end of the local branching proce-

dure, we update the lower bound of the Benders decomposition algorithm by eval-

uating [MP]’s objective function using the feasible solutions Ȳh obtained through

the local branching procedure. The pseudo-code of the overall local branching

algorithm is presented in Algorithm 2.

2.5 Experimental Results

This section conducts a computational study on model [IMP] to test the perfor-

mance of the proposed Benders decomposition algorithm and to draw managerial

insights. The proposed mathematical model and the solution algorithms are coded

in python 2.7 on a desktop with Intel Core i7 3.6 GHz processor and 16.0 GB RAM.

The optimization solver used is Gurobi Optimizer 6.53. The following subsection

present the performance of the accelerated Benders decomposition algorithm for

realistic test instances. Additionally, in subsection 2.5.2 we demonstrate a real life

case study considering four states in the Southeast region of the United States,

namely, Arkansas (AR), Louisiana (LA), Mississippi (MS), and Tennessee (TN) to

visualize and validate the modeling results. The input parameters used in this

case study are discussed in subsection 2.5.2.1. All costs are calculated based on

3Available from: http://www.gurobi.com/
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2018 dollars value. To the end subsection 2.5.2.2 reports the managerial insights

drawn from our experimental study.

2.5.1 Analyzing the Performance of the Solution Algorithms

This section presents our computational experience in solving model [IMP] us-

ing the algorithms proposed in Section 2.4. We assess the performances of differ-

ent accelerated techniques within the standard Benders decomposition algorithm

and compare their computational efficiency with Gurobi. Table 2.1 summarizes

the problem instances considered for analyzing the performance of the solution

algorithms. We vary set |I|, |J |, |K|, |G|, |S|, |Njk|, and |T | to obtain 20 different

problem instances. The following criterion are set to terminate the algorithms: (i)

the optimality gap (i.e., ε = |UB − LB|/UB) falls below a threshold value (e.g.,

ε = 0.01); or (ii) the maximum time limit (tmax) is reached (e.g., tmax = 10,800 CPU

seconds); or (iii) the maximum iteration limit (rmax) is reached (e.g., rmax = 500).

To help the readers follow our approaches, we have used the following notations

to represent the algorithms:

• Benders+VI: Benders decomposition algorithm + valid inequalities

• Benders+VI+KI: Benders decomposition algorithm + valid inequalities +
knapsack inequalities

• Benders+VI+KI+PO: Benders decomposition algorithm + valid inequalities
+ knapsack inequalities + pareto-optimal cuts

• All cuts: Benders decomposition algorithm + valid inequalities + knapsack
inequalities + pareto-optimal cuts + input ordering + local branching
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Table 2.2 summarizes the computational performances between different en-

hancements of the Benders decomposition algorithm with Gurobi using the test

instances presented in Table 2.1. The column headings t(s), tMP(s), ε(%), and r

represent running time of the algorithm, running time of the master problem, op-

timality gap, and number of iteration for each respective algorithm. Note that, in

reporting the computational performance of the algorithms, we highlighted the

algorithm/Gurobi which is solved in less than the stopping criteria ε while si-

multaneously producing the smallest running time (represented by t(s) in Tables

2.2 and 2.3) for a given test instance. Otherwise, if such a quality solution is not

found within the maximum time or iteration limit, the algorithm/Gurobi with the

smallest optimality gap (represented by ε(%) in Tables 2.2 and 2.3) is highlighted.

In the following, we summarize our observations for combined Tables 2.2 and 2.3):

• Clearly, Gurobi outperforms all variants of the Benders decomposition al-
gorithm to solve small/medium scale problem instances (e.g., Case 1-7, 11-
13, 16, 17) by obeying the pre-specified termination criterion. For those in-
stances, the solver generates solutions with an average optimality gap of
0.82% and solution time of 491 CPU seconds, which are significantly lower
than different variants of the Benders decomposition algorithm. However,
for larger instances (e.g., Case 8-10, 14, 15, 18-20), the solver was unable to
produce any results due to getting out of memory in solving model [IMP].

• Introduction of knapsack inequalities (Benders+VI+KI) slightly improves the
performance of the Benders+VI algorithm in solving smaller test instances
(e.g., Case 1-7) for problem [IMP]; however, both Benders+VI and Ben-
ders+VI+KI algorithms are unable to produce any satisfactory results for
relatively medium to large sized problem instances. Note that we did not
report any computational results for standard Benders decomposition algo-
rithm since the algorithm is unable to solve any problem instances reported
in Table 2.1.
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• We observe significant improvement in computational performances over
Benders +VI and Benders+VI+KI algorithms when pareto-optimal cut is in-
troduced in Benders+VI+ KI+PO. Results in Tables 2.2 and 2.3) show that
algorithm Benders+VI+KI+PO is now capable of solving 17/20 problem in-
stances, over 7/20 instances solved by both Benders+VI and Benders+VI+
KI algorithms, within the prespecified termination criterion. On average,
algorithm Benders+VI+ KI+PO drops the running time of Benders+VI+KI
algorithm by 37.1 % with an average optimality gap of 1.16%. Finally, we
note that algorithm Benders+VI+KI+PO is capable of solving 8/20 problem
instances within an acceptable optimality gap for which Gurobi gets out of
memory.

• Results in Tables 2.2 and 2.3) indicate that the introduction of input ordering
and local branching in All cuts algorithm consistently produces high qual-
ity solutions over different variants of the Benders decomposition algorithm.
On average, algorithm All cuts is 24.23% faster than algorithm Benders+VI+
KI+PO while producing an average optimality gap of 0.55%. Further, the
algorithm provides superior computational performances in solving large-
scale problem instances when Gurobi gets out of memory. Note that the intro-
duction of input ordering itself slightly improves the performance of the All
cuts algorithm. Therefore, we did not show a separate column to demon-
strate the computational performance of this variant of the Benders decom-
position algorithm. This implies that majority of the improvements in All
cuts algorithm is mainly contributing by the local branching technique. More-
over, as implied by columns tMP(s) in Tables 2.2 and 2.3), different variants
of the Benders decomposition algorithm utilize on average 80.0-95.2% of its
running time to solve only the Benders master problem.

To summarize, algorithm All cuts seems to offer high quality solutions con-

sistently in solving [IMP] within the experimental range. Since, the performance

improvement using algorithm All cuts is due to the inclusion of local branching,

in Tables 2.4 and 2.5 we detail the comparisons between few settings of this local

branching technique. We pick instance 3 and 18 from Table 2.1 as a representative

of small instance and large instance, respectively. From Table 2.4 it is clearly visible

that with the larger value of kv and Ndiv, the performance of this algorithm drops

i.e., the selected instance needs more time to solve. On the other hand, Table 2.5
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shows the benefit of having a higher kv and Ndiv while solving the large instance.

In both tables we highlight the setting with the lowest solution time. While con-

ducting experimentation for large instance we noticed that higher kv and Ndiv pro-

vide quicker solution time, therefore, we increased the kv to one more step kv = 4

that was not necessary for the small instance. Finally, in running the experiments

reported in Tables 2.2 and 2.3) we used the understanding obtained from Tables 2.4

and 2.5 and selected different values of kv and Ndiv as appropriate. To be specific

we used kv value ranging from 2 to 6 in applying algorithm All cuts.

Our experimental results in Tables 2.2 and 2.3) can be easily validated by fol-

lowing the studies of Fischetti and Lodi [41], Rei et al. [116], and Gonzalez et

al. [49]. Fischetti and Lodi [41] conducted a comprehensive experimentation that

demonstrates the performance of Local Branching as an exact metaheuristic ap-

proach. Authors solved multiple MIP test instances and showed the performance

of Local branching in solving them. Gonzalez et al. [49] applies Local branch-

ing techniques for multiple random test instances and perform statistical analysis

to observe the statistical significance of this technique. To observe the statistical

significance of our experimental results obtained in Table 2, we perform paired

Wilcoxon signed rank test between Enhanced Benders decomposition algorithm

variant with local branching (algorithm All cuts) and without local branching (al-

gorithm Benders+VIQ+KI+PO). The test verifies whether the optimality gap and

the mean solution time obtained by the Benders+VIQ+KI+PO and All cuts shown

in Table 2 are same or significantly different. We are interested in administering
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two tests, one for the optimality gap (Test 1) and another one for the mean solution

time (Test 2). The null hypothesis, alternative hypothesis, and obtained p-values

for these two tests can be seen in Table 2.6. Note that before applying the Wilcoxon

signed ranked test, we verified all assumptions of this test. The first and second

test shows the p-value of 0.000293 and 0.0001974, respectively which confirms the

superiority of the proposed local branching strategy (algorithm All cuts) in terms

of both solution quality and time under our current settings.
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Algorithm 1: Benders Decomposition Algorithm

Initialize, r ← 1, ε, UBr ← +∞, LBr ← −∞, P r
D ← 0

terminate← f alse

while terminate = false do

Solve [MP] to obtain the values of {Y1r
snjkt}s∈S ,n∈Njk,j∈J ,k∈K,t∈T ,

{Y2r
mbsjt}m∈M,b∈B,s∈S ,j∈J ,t∈T , zr

MP, and zr
MAS ;

if zr
MP > LBr then
LBr ← zr

MP

end

For fixed {Ŷ1r
snjkt}s∈S ,n∈Njk,j∈J ,k∈K,t∈T and {Ŷ2r

mbsjt}m∈M,b∈B,s∈S ,j∈J ,t∈T

solve [DP] to obtain (µmit, κjt, ιkt, ξmbsjkt, χmbsjt, ϑmjt, ζmkt, εmgt) ∈ P r
D

and zr
SUB

if zr
SUB + zr

MAS < UBr then

UBr ← zr
SUB + zr

MAS;

end

if (UBr−LBr)
UBr ≤ ε then

terminate← true

else

P r+1
D = P r

D
⋃{(µmit, κjt, ιkt, ξmbsjkt, χmbsjt, ϑmjt, ζmkt, εmgt)}

end

r ← r + 1

end
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Algorithm 2: Local Branching Algorithm

Initialize, rhs← kv, iter ← 1, dv ← 1, diversify← f alse, h← 1, Ȳh ← ∅, TL, εk

Add ∆(Y, Ȳ1
) ≥ 1

while (iter ≤ itermax) ∨ (dv ≤ Ndiv) do

Add ∆(Y, Ȳ1
) ≤ rhs

Solve the local branching subproblem and obtain Ȳ2

if Case 1: optimal solution is found within defined TL and gap εk then

Reverse the last local branching constraint as ∆(Y, Ȳ1
) ≥ kv + 1

Ȳ1 ← Ȳ2, diversi f y← f alse, rhs← kv, Ȳh ← Ȳ2, h← h + 1, iter ← iter + 1

end

if Case 2: subproblem is infeasible then

Reverse the last local branching constraint into ∆(Y, Ȳ1
) ≥ kv + 1

rhs← kv +
⌈

kv
2

⌉
, dv ← dv + 1

end

if Case 3: solution is suboptimal then

Remove the last local branching constraint ∆(Y, Ȳ1
) ≤ kv

Add ∆(Y, Ȳ1
) ≥ 1 to the current problem

Ȳ1 ← Ȳ2, diversify← f alse, rhs← kv, Ȳh ← Ȳ2, h← h + 1, iter ← iter + 1

end

if Case 4: subproblem reached timelimit TL without improvement then

Remove the last local branching constraint ∆(Y, Ȳ1
) ≤ kv

Add ∆(Y, Ȳ1
) ≥ 1 to the current problem

if diversify then
dv ← dv + 1, rhs← kv + 1

else
rhs← kv − 1

end

diversify← true

end
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Table 2.1

Problem size and test cases

Case |I| |J | |K| |G| |S| |Njk| |T |
Binary

variables

Continuous

variables

Total

variables

No. of

constraints

1 40 5 5 40 15 15 4 135,000 4,507,200 4,642,200 379,700

2 40 5 5 40 15 15 8 270,000 9,014,400 9,284,400 759,400

3 40 5 5 40 15 15 12 405,000 13,521,600 13,926,600 1,139,100

4 40 5 5 40 15 15 16 540,000 18,028,800 18,568,800 1,518,800

5 40 5 5 40 15 15 20 675,000 22,536,000 23,211,000 1,898,500

6 40 8 8 40 15 15 4 288,000 11,531,136 11,819,136 896,288

7 40 8 8 40 15 15 8 576,000 23,062,272 23,638,272 1,792,576

8 40 8 8 40 15 15 12 864,000 34,593,408 35,457,408 2,688,864

9 40 8 8 40 15 15 16 1,152,000 46,124,544 47,276,544 3,585,152

10 40 8 8 40 15 15 20 1,440,000 57,655,680 59,095,680 4,481,440

11 83 13 8 43 10 10 4 312,000 8,343,792 8,655,792 972,704

12 83 13 8 43 10 10 8 624,000 16,687,584 17,311,584 1,945,408

13 83 13 8 43 10 10 12 936,000 25,031,376 25,967,376 2,918,112

14 83 13 8 43 10 10 16 1,248,000 33,375,168 34,623,168 3,890,816

15 83 13 8 43 10 10 20 1,560,000 41,718,960 43,278,960 4,863,520

16 83 13 13 43 10 10 4 442,000 13,547,312 13,989,312 1,495,664

17 83 13 13 43 10 10 8 884,000 27,094,624 27,978,624 2,991,328

18∗ 83 13 13 43 10 10 12 1,326,000 40,641,936 41,967,936 4,486,992

19 83 13 13 43 10 10 16 1,768,000 54,189,248 55,957,248 5,982,656

20 83 13 13 43 10 10 20 2,210,000 67,736,560 69,946,560 7,478,320

∗Representative problem size for the real life case study.
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Table 2.4

Comparison between different settings of local branching (for small instance)

Instance kv Ndiv t(s) ε(%)

Small Instance

2

2 1,408 0.16

3 1,389 0.18

4 1,376 0.18

3

2 1,498 0.33

3 1,750 0.35

4 1,810 0.39
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Table 2.5

Comparison between different settings of local branching (for large instance)

Instance kv Ndiv t(s) ε(%)

Large Instance

2

2 8,420 0.96

3 8,398 0.89

4 8,480 0.95

3

2 7,620 0.87

3 7,457 0.86

4 7,680 0.90

4

2 7,180 0.98

3 6,429 0.90

4 6,490 0.91
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Table 2.6

Results of Wilcoxon signed rank test

Test 1 Test 2

Null Hypothesis

(H0)

There is no significant difference between the

quality of the solution found with algorithm

Benders+VIQ+KI+PO and algorithm All cuts

There is no significant difference between the

solution time required to solve [IMP] using algorithm

Benders+VIQ+KI+PO and algorithm All cuts

Alternative Hypothesis

(H1)

The solution quality obtained with algorithm

All cuts are significantly better than that found

by algorithm Benders+VIQ+KI+PO

The solution time required to solve [IMP] using

algorithm All cuts is significantly faster than that

needed by algorithm Benders+VIQ+KI+PO

p-value 0.000293 0.0001974

Confidence level 99% 99%

Significance level 0.01 0.01

2.5.2 Case Study

This subsection demonstrates a real life case study considering four Southeast

U.S. states, Arkansas (AR), Louisiana (LA), Mississippi (MS), and Tennessee (TN).

In our case study, we considered thirteen waterway ports along Mississippi river

as origin ports (|J | = 13) and destination ports (|K| = 13). The set sizes related

to this case study is reported in Table 2.1 (case 18)4. In the next few subsections

we introduce the case study region and the network parameters used in this case

study. Note that, in order to solve this case study and perform sensitivity analysis,

we used the algorithm that performs best in solving case 18 following Table 2.2,

i.e., All cuts.
4A sample dataset can be downloaded from https://www.farjananur.net/

publications
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2.5.2.1 Data Description

Inland Waterway Port Location: This study considers a total of thirteen inland

waterway ports along the Mississippi River. Figure 5.2 shows the geographical lo-

cations of the ports considered in this study. Among them five ports, namely,

the Port of Rosedale, Port of Greenville, Port of Vicksburg, Port of Natchez, and

Port of Yazoo County, are located in Mississippi. Note that the first four ports

are located alongside the Mississippi River, whereas the Port of Yazoo County is

situated along a stream flowing from the Mississippi River. We exclude the Port

of Claiborne County from further consideration since the facility is currently un-

available for operation [85]. Besides these ports, we consider the Port of Geis-

mar Louisiana, Port of Greater Baton Rouge, Port of South Louisiana, and Port of

Gramercy from Louisiana, Port of Little Rock from Arkansas, and Port of Mem-

phis, Pemiscot County Port, and New Madrid County Port from Tennessee. All

the ports are directly connected with each other via the Mississippi River.

Supply Data: Four commodities, namely, rice, corn, woodchips, and fertilizer

are selected to transport them from their supply sites to demand locations via the

inland waterway transportation network. Figure 4.6 shows the supply distribu-

tion (in 1,000 tons) of these four commodities in the test region. Only the suppliers

that are located within a radius of 60 miles from the ports are considered for the

study. Among the four commodities, rice and corn are highly seasonal in nature
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Figure 2.3

Existing inland waterway port locations along the Mississippi River
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and are not available throughout the year. Rice is available only between August

and October of each year whereas corn is harvested only between mid-July and

early December of each year [133]. Similarly, it is observed that woodchips remain

available year-round except three months during the winter (December to Febru-

ary) [133]. However, availability of fertilizer is uniform throughout the year. The

test region produces 6.3 and 113.8 million tons of rice and corn per year from 42

and 59 different counties, respectively [135]. On the other hand, the region pro-

duces 8.3 and 0.4 million tons of woodchips and fertilizer per year from 31 and 22

different counties, respectively [136, 137].

Demand Data: This study considers a total of 43 industries in Mississippi as de-

mand points for the commodities. These facilities are located nearby the inland

waterway ports. The annual demand for the commodities are set to be 3.8, 68.3,

8.3, and 0.37 million tons of rice, corn, woodchips, and fertilizer, respectively

[135, 137]. Figure 2.5 shows the location and distribution of demand points for

all the four commodities in Mississippi.

Transportation Costs: This study considers two modes of transportation to trans-

port commodities from their sources to destinations: trucks and barges. Trans-

portation distances between supply sites i ∈ I and origin ports j ∈ J , and des-

tination ports k ∈ K to markets g ∈ G are short. Therefore, trucks are preferred

to carry the commodities between them. A semi truck having 25 tons of load
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(a) Rice (b) Corn

(c) Woodchips (d) Fertilizer

Figure 2.4

Supply availability for (a) rice, (b) corn, (c) fertilizer, and (d) woodchips in the

test region (in 1,000 tons)
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(a) Rice (b) Corn

(c) Woodchips (d) Fertilizer

Figure 2.5

Demand for (a) rice, (b) corn, (c) fertilizer, and (d) woodchips in the test region

(in 1,000 tons)
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capacity can be used to serve this purpose. The fixed cost (e.g., loading and un-

loading cost) and variable cost (e.g., fuel cost) for such a truck can be $5/ton and

$1.20/mile/truckload, respectively [36]. On the other hand, waterway transporta-

tion is primarily conducted between origin ports j ∈ J and destination ports

k ∈ K by the association of barges and towboats. Using a towboat that can carry

a maximum of eight barges, incurs a fixed loading and unloading cost of $244.38

[138]. Considering the waterway depth in the Mississippi River, towboat capacity

is restricted to a maximum of 15 barges having a maximum capacity of 1,500 tons

each [138]. Barge rate is set as $0.017/mile/ton that is adopted from a study of

Gonzales et al. [48].

Water-level Fluctuations: Water level fluctuation is one of the notable issues that

significantly impacts the Inland waterway transportation system. Different wa-

terbodies all over the world face this unavoidable phenomenon in different time

period of the year such as Yangtze River at China [94], Rhine River at Europe [94],

Tagliamento River at Europe [131] and many others. The Mississippi River also

experiences water level fluctuations in different locations and time periods of a

year that significantly impacts the inland waterway port operations. For instance,

lower Mississippi River has better flow compared to the upper Mississippi River;

therefore, the load carrying capacity of this segment of river is better and more

reliable compared to the upper Mississippi River. On the other hand, it is evident

from the historical records that the water level of this portion of river experiences
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significant variations over the year that impacts the barge traffic flowing through

this waterway. This fluctuation often becomes significant even in different weeks

of the same month. Figure 5.5 provides an example demonstrating the water level

fluctuations between Port of Rosedale and Port of Greenville from July, 2016 to

June, 2017 [139]. Each data point in this figure shows the weekly water stage5 vari-

ation (e.g., minimum, maximum, and average water level) as reported by the US

Army Corps of Engineers [139]. It is observed that the water level drops primarily

between the middle of August and end of December of a calender year where the

drop becomes maximum during the first three weeks of October (week 14-16 in

Figure 5.5). Note that, other than this time period, the water stage generally re-

mains above the desired level of 14.2 feet, except in May when the level reaches to

42 feet, which is greater than the flood level (37 feet) [139].

2.5.2.2 Experimental Results

Impact of water level fluctuation on towboat and barge selection:

Our first set of experiments examine the impact of water level fluctuation on

overall system performance. To run these experiments, we create three different

scenarios which are summarized in Table 2.7. These scenarios are created based on

our observations in Figure 5.5. Note that the difference between scenario 3 with 2

is to consider water fluctuation up to flooding level which typically occurs during

the month of May in the test region [132]. Figure 2.7 illustrates how the selection of

5A popular measure for water level in a river stream with respect to a reference height
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Figure 2.6

Example demonstrating water level fluctuations between Port of Rosedale and

Port of Greenville from July, 2016 to June, 2017 [139]

barges (Y2
mbsjt) and barge to towboat ratio6 (Y2

mbsjt/Y1
snjkt) are impacted under three

different scenarios as described in Table 2.7. Clearly, Y2
mbsjt as well as Y2

mbsjt/Y1
snjkt

decisions are significantly impacted if water level fluctuations are taken into con-

sideration. It is observed that the test region is required to use an additional 81.5%

and 39.7% of Y2
mbsjt and Y1

snjkt, respectively, if the water level fluctuation is appro-

priately measured and taken into consideration in model [IMP]. These decisions

increase Y2
mbsjt/Y1

snjkt by approximately 16.1% since on average more barges are

now required to connect with a single towboat to satisfy the market demand for

the commodities. Note that both Y2
mbsjt and Y2

mbsjt/Y1
snjkt are highly sensitive to

6The ratio indicates on average how many barges are connected with a towboat in a single trip
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peak supply seasons (e.g., July-November) and has little to no impact during the

off supply/demand seasons (e.g., February-June) (shown in Figure 2.7). Finally,

we observe that, if flood level is taken into consideration (scenario 3), then model

[IMP] forces no inland waterway transportation for the month of May, which re-

sults in a 6.9% increase in Umgt and 7.1% increase in overall system cost for the test

region.

Table 2.7

Description of scenarios

Scenario Description

1 Water level fluctuation is ignored

2 Water level fluctuation is considered but flooding level is ignored

3 Water level fluctuation is considered with flooding level

Impact of supply (ϕmit) changes on overall system performance:

This set of experiments analyze the impact of supply changes on overall system

performance. To run the experiments, we change the base supply (ϕmit) by ±15%

and ±30% and observe its impact on towboat (Y1
snjkt) and barge selection (Y2

mbsjt),

unsatisfied demand (Umgt), and storage level (Hmjt) of the commodities. Figure 2.8

illustrates the impact of supply changes on overall system performance. Note that

in Figure 2.8, t = 1 represents a representative week of month July. Further, to run
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Figure 2.7

Selection of Y2
mbsjt and Y2

mbsjt/Y1
snjkt under different water level scenarios
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the experiments, we kept the demand dmgt fixed under all scenarios. Experimental

results indicate that if ϕmit changes by ±30%, selection of Y1
snjkt and Y2

mbsjt changes

by 14.1%/-15.8% and 12%/-49%, respectively. Observe that the reduction in ϕmit

significantly increases the unsatisfied demand quantity Umgt, primarily in the time

period between August (t = 2) to November (t = 5) of the planning horizon.

Note that this is the peak supply and demand period of the year when all four

commodities are available, including rice and corn. This, in turn, also impacts the

inventory management decisions Hmjt of the ports. For instance, if ϕmit changes

by ±30%, Hmjt is changed by 50%/-78% posing some serious challenges for the

inland port managers to manage inventories during those peak supply seasons.

Impact of demand (dmgt) changes on overall system performance:

This set of experiments provide a similar analysis as in Section 2.5.2.2, but

changing the demand by ±15% and ±30% from the base demand dmgt in order

to observe their impacts on overall system performance. Figure 2.9 illustrates the

impact of changes in dmgt on towboat (Y1
snjkt) and barge selection (Y2

mbsjt), unsat-

isfied demand (Umgt), and storage level (Hmjt) of the commodities. Experimen-

tal results indicate that the selection of Y1
snjkt and Y2

mbsjt is highly sensitive to the

changes in dmgt on the overall planning horizon, but in particular to months from

July to November, when the supply and demand peaks for the commodities. For

instance, if dmgt changes by±30%, selection of Y1
snjkt and Y2

mbsjt changes by 14.3%/-

52.1% and 25.4%/-32.2%, respectively. We further observe the changes in dmgt on

Umgt and Hmjt decisions. For instance, Hmjt utilization is only realized between
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Figure 2.8

Impact of supply changes on system performances
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months from July to September in a planning horizon when the supply season

peaks. However, Hmjt drops by 34% and 62.8% when dmgt is increased by 15% and

30%, respectively. This is understandable since the model finds it economical to

transport more commodities to satisfy market demands rather than storing them

in the inventories.

Impact of Barge availability on system performance:

Barges are the key elements of the inland waterway transportation. Depend-

ing on the products handled, three types of barges are commonly used along

the Mississippi River: (i) covered barges to carry grains and agricultural prod-

ucts (e.g., corn), (ii) tank barges to carry liquid products (e.g., petroleum), and

(iii) open barges to carry dry products (e.g., coal) [134]. According to the Amer-

ican Waterways Operators, more than 22% of the existing barges are expected

to become obsolete by the end of 2018, primarily due to exceeding their useful

service life [134]. This not only will significantly impact the barge availabilities

abjt, but also will raise concerns for waterway transportation like the Mississippi

River that contributes approximately 80% of the country’s overall inland water-

way transportation [128]. Note that, with fewer barges, the overall inland water-

way transportation will be largely impacted, especially during the peak demand

season (September to November) in the Southeast region of the United States.

Therefore, we conduct sensitivity analysis by dropping the overall barge availabil-

ity āt = ∑b∈B,j∈J abjt; ∀t ∈ T by 30%, 45%, and 60%, respectively from the base

case scenario and analyzing its impact on the overall system performance. Note
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Figure 2.9

Impact of demand changes on system performances
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that towboats have better rebuild and repair rates [128]; hence, their availabilities

(asjt) remain fixed for this set of experiments. Results in Figure 2.10 clearly indi-

cate that āt significantly impacts the number of barges handled by the Mississippi

River (|Y2
mbsjt|) and it’s consequence to overall demand satisfaction (Umgt) during

the high production seasons for this region. For instance, a 30%/60% drop in āt

decreases |Y2
mbsjt| and Umgt by 13%/34.2% and 11%/29.3%, respectively and the

significance is more prominent for the time period between September to Novem-

ber, when both the supply and demand for all four commodities are high. We end

of our discussion by highlighting that āt has marginal to no impact on the off-peak

production seasons as evidenced from the results in Figure 2.10.

2.6 Conclusion

This paper proposes a mathematical model formulation which minimizes the

short-term operational decisions (e.g., trip-wise towboat and barge assignment)

and mid-term supply chain decisions (e..g., inventory management, transporta-

tion decisions) for an inland waterway transportation network in such a way that

the overall supply chain cost can be minimized. We present an enhanced Benders

decomposition algorithm to efficiently solve our proposed optimization model in

a timely manner. We then use few Southeast US States as a test bed to visualize

and validate the modeling results. A number of managerial insights are drawn,

such as how the water level fluctuation, supply and demand variation, and barge

availability impact the inland waterway transportation.
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Figure 2.10

Impact of barge availability on system performances
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To summarize, the major contributions of this study include: (i) proposing a

multi-commodity, multi-time period mathematical model that optimizes inland

waterway port operations and minimizes the overall system cost from a supply

chain viewpoint; (ii) testing an efficient variant of the Benders decomposition

algorithm (more specifically, local branching procedure with pareto-optimal cut,

knapsack, and valid inequalities) to solve realistic-size network design problems;

and (iii) drawing managerial insights from a real-life case study. We believe the

proposed methodologies and managerial insights obtained from this study will

help decision makers to design an efficient supply chain including inland water-

way ports.

This research can be extended in several directions. First, it would be interest-

ing to see how the stochasticity associated with commodity supply and demand

impact the inland waterway transportation. The model can also be extended to

incorporate barge and tow routing, scheduling, and re-positioning issues. Next,

our study assumes that the inland waterway ports will never be impacted by any

disruption. However, in practice both natural (e.g., hurricane, tornado) or human-

induced (e.g., cyber attack) disruption can significantly impact the port operations.

These issues will be examined in future studies. Further, we used an enhanced

variant of the Benders decomposition algorithm that includes different cut gener-

ation techniques and heuristics such as valid inequalities, knapsack inequalities,

pareto-optimal cuts, input ordering, and local branching techniques. However,

further enhancement of Benders decomposition algorithm is possible by applying

74



www.manaraa.com

MP size management techniques, generating alternative formulations, using ad-

ditional heuristics, adding covering cuts, or using few Benders-type heuristics as

proposed by Rahmaniani et al. [111]. Our future studies will examine the appli-

cability and performance of these techniques to solve different inland waterway

transportation based logistic network design problems.
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CHAPTER 3

A PARALLELIZED HYBRID DECOMPOSITION ALGORITHM TO SOLVE A

CONGESTED INLAND WATERWAY PORT MANAGEMENT PROBLEM

UNDER UNCERTAINTY

3.1 Introduction

Inland waterway ports are indispensable components of the nation’s water-

way transportation system which greatly contributes to the overall economy of the

nation. In the United States, these ports contribute approximately 15 billion dol-

lars to the nation’s GDP (Gross Domestic Product) along with creating more than

250,000 job opportunities (both direct and indirect) annually [89]. Additionally,

these ports play a major role in the rural industrial and agricultural development

for a nation [84]. Despite of their great potentiality, this segment of transporta-

tion system is frequently impacted by many factors which hurts it’s productiv-

ity, including but not limited to congestion, aging infrastructure, delays caused

by scheduled and unscheduled closures of locks (primarily due to maintenance

activities), and many others [140]. According to the American Society of Civil En-

gineers (ASCE), in 2010, the United States encountered a total of $33 billions of

additional annual expenditure primarily due to the delays governed by conges-

tion and other waterway specific issues [8]. This cost will continue to increase
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over time and is projected to reach nearly $49 billions by 2020 [8]. Therefore, it

now becomes imperative to alleviate congestion from the inland waterway ports,

primarily via optimal resource utilization/allocation and efficient transportation

planning. Doing such will not only attract potential investors to utilize inland

waterway transportation over freight transportation but also continue to support

retaining the national GDP and employment in this sector while reducing the un-

expected monetary investment due to congestion and other port related issues.

Though seemingly sound similar, inland waterway ports hold some unique

properties that differ them significantly from the seaports. For instance, these ports

generally handle barge traffic drafting upto 9 feet only, located primarily near

smaller bodies of water (e.g., rivers and canals), usually land intensive, and/or

handle smaller counts of larger users and a large number of smaller users [84].

Additionally, the water level between the channels of two connecting inland wa-

terway ports fluctuates heavily in different time periods of the year [139, 94, 90].

Depending on the severity of this fluctuation, these ports, including the waterway

itself, often experience disruptions, such as drought and flood that may tremen-

dously impact or even cease the port operations for an extended period of time.

Another prevalent feature that distinguishes inland waterway ports over seaports

is that these ports commute heavy volume of perishable agricultural products

which are highly seasonal in nature. The seasonality in agricultural products

coupled with time varying waterway conditions and the availability of locks and

dams between two source destination ports may excessively delay the port op-
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erations which directly impacts the operational planning of the ports under con-

sideration. With all these outstanding challenges, it is quite certain that the opti-

mization models available in the literature for the maritime transportation may no

longer be directly applicable for the inland waterway ports. Hence, to ensure long

term sustainment of the inland waterway ports, there is a critical need to develop

sophisticated optimization models that best capture the unique characteristics of

this cost efficient, reliable, and environmentally friendly transportation sector.

A major stream of ongoing research develop optimization models to solve di-

versified seaport-related problems, such as ship routing and scheduling [29, 68],

inventory routing [5], berth allocation and scheduling [27, 32, 141], empty con-

tainer re-positioning [43], sailing speed optimization [73, 141], bunker consump-

tion [145], emission consideration [141], disruption [43, 126], container routing

[146], port delays [148], and many others. Apart from adopting mathematical

approaches, few researchers develop simulation models to address similar prob-

lems (e.g., [118, 125, 121, 44]). Even though deep penetration to seaport research

is observed, inland waterway ports did not receive much attention from the re-

search community. A few considerations can be noticed for deep draft inland ports

which are capable of handling container cargos and ships; however, almost no

research has been conducted to date that puts specific considerations to model

shallow draft inland ports1. These ports primarily handle shallow draft vessels (e.g.,

1The ports that are unable to handle barges/vessels drafting more than 9 feet are known as
shallow draft inland ports. For the ones that can handle barges/vessels drafting more than 9 feet, are
known as deep draft inland ports.

78



www.manaraa.com

barge, towboats). Considering their outstanding contributions in the overall trans-

portation system and economy, better understanding of shallow draft inland wa-

terway ports is imperative to successfully design and manage a sound and efficient

supply chain network.

To address this need, this study proposes a model which magnifies how dif-

ferent shallow draft inland waterway port-related internal (e.g., barge/towboat

assignments, inventory decisions, port delays) and external (e.g., waterlevel fluc-

tuations) factors/decisions impact the overall supply chain system performance.

More specifically, we propose a capacitated, multi-commodity, multi-period, two-

stage stochastic mixed-integer nonlinear programming model which jointly opti-

mizes trip-wise towboat and barge assignment decisions along with different sup-

ply chain decisions (e.g., inventory management, transportation decisions) under

a congested and stochastic environment and in such a way that the overall supply

chain cost can be minimized. The proposed model realistically captures a number

of factors that appropriately characterize the operations of a shallow draft inland

waterway port, such as towboat and barge availability, weight and volumetric

capacity restriction of barges, dredging issues, commodity mixture restrictions,

storage restrictions at ports, trip restrictions between origin-destination ports, con-

gestion issues, delays in locks and dams, and many others. We realized that our

proposed mathematical model is an extension of the fixed charged, uncapacitated

network flow problem which is already known to be an NP-hard problem [74].

Therefore, we develop a highly customized parallelized hybrid decomposition al-
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gorithm, combining Constraint Generation algorithm, Sample Average Approxi-

mation, and an enhanced variant of the L-shaped algorithm, to effectively solve

the large instances of our proposed optimization model in a reasonable amount of

time.

Apart from proposing the mathematical model and solution approaches, an-

other important contribution of this study is the application of this model to a real

world case study. We use the inland waterway transportation network along the

Mississippi river as a testing ground to visualize and validate the modeling re-

sults. The outcome of this study provides a number of managerial insights, such

as the impact of water level fluctuations on towboat and barge selection, cost due

to delay in transportation, and commodity supply fluctuations on overall system

performance, which can effectively aid decision makers to design a cost-efficient

shallow draft inland waterway transportation network.

This paper is organized as follows. Section 3.2 reviews the related works. Sec-

tion 3.3 describes the problem statement and introduces the proposed mathemat-

ical model formulation. Section 3.4 introduces different algorithms to solve our

proposed mathematical model including the parallelized hybrid nested decompo-

sition algorithms. Section 3.5 presents a real life case study, draw several manage-

rial insights from the case study, and summarizes the computational performances

of the proposed algorithms. Finally, we conclude our study and discuss several fu-

ture research avenues in Section 3.6.
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3.2 Literature Review

Different realistic aspects of deep draft inland waterway ports have attracted the

research community for many years, including specific problems in optimizing

barge and towboat routing and repositioning, berth allocation, port disruption,

delays in locks and dams, and a few others. This section provides a comprehensive

literature overview on these specific research problems.

Berth allocation problem is a common problem that typically experiences by

both seaports and inland waterway ports. To date, few researchers have attempted

to solve this problem for the deep draft inland waterway ports. For instance, Gru-

bivsic et al. [50] solve a berth layout design problem to minimize the overall vessel

waiting time. Depuy et al. [30] consider several factors, such as fleet location ca-

pacity, total volume of barges, and average handling time, to optimally allocate

barge volume to different fleet locations. Arango et al. [11] adopt a combined

simulation-optimization approach to solve a berth allocation problem. Guan and

Cheung [51] propose two berth allocation model formulations while adopting a

tree search solution procedure to solve the problems in realistic size test instances.

In addition to this research challenge, another stream of research study how

the performances of locks and dams impact the deep draft inland waterway trans-

portation network. For instance, Ting and Schonfeld [130] utilize a simulation-

optimization framework to decide how much capacity increment is required for

the locks so that the costs associated with tow delays can be minimized. Wang

and Schonfeld [147] also adopt a combined simulation-optimization approach to
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schedule the investment decisions for lock reconstruction and rehabilitation. Ting

and Schonfeld [129] introduce an integrated tow control algorithm in order to re-

duce the delays between a series of locks. Most recently, Tan et al. [127] propose

an optimization model that jointly optimizes ship schedule and sailing speed for

the deep draft inland shipping services under uncertain dam transit time.

Another stream of research focus on optimizing the barge routing and empty

container repositioning problem for the deep draft inland waterway ports. One

such study is conducted by Braekers et al. [20] where the authors optimize barge

routing and empty container repositioning between a sea port and few hinterland

ports. The extension of this work [19] includes vessel capacity and round trip ser-

vice frequency to the barge routing and empty container repositioning problem.

Marass [76] proposes a mixed-integer linear programming (MILP) model to opti-

mize the transport routes of chartered container ships or tows for an inland wa-

terway port. Another MILP model is proposed by Alfandari et al. [6] to provide

an optimal planning associated with liner service for a barge container shipping

company. Davidovic et al. [28] study a barge container ship routing problem and

propose a guided local search technique to solve this problem. Most recently, An

et al. [9] formulate a MINLP model to solve an empty container repositioning

shipping network design problem.

Realizing the need that a port may fail either due to natural (e.g., hurricane,

tornado) or human-induced (e.g., cyber-attack) disaster, few studies focus on iden-

tifying the resiliency of a deep draft inland waterway port. For instance, Baroud et
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al. [13] convert different stochastic resilience-based component importance mea-

sures into an optimization framework to determine the important waterway links

and the precedence of link recovery in case of a disaster. Oztanriseven and Nacht-

man [102] develop a simulation-based approach to estimate the potential eco-

nomic impacts of inland waterways disruption response. The authors utilize McClellan-

Kerr Arkansas River navigation system as a testbed to visualize and validate the

simulation results. MacKenzie et al. [72] analyze the economic impact of any

sudden inland port closure by combining a simulation and a multi-regional input-

output model. Pant et al. [103] propose a dynamic, multi-regional interdepen-

dency model to assess the effect of disruptions on the waterway networks, includ-

ing both ports and waterway links. Folga et al. [42] propose a system level model

to analyze the interdependency of failure followed by a disaster. Hosseini and

Barker [59] propose a Bayesian network to model the infrastructure resilience of

an inland waterway port. Other studies related to inland waterway ports include

the consideration of port-specific economic analysis [4, 87, 151, 67], optimal dredg-

ing scheduling and investment decisions [86, 113, 18], the efficiency of inland wa-

terway container terminals [152], tug scheduling between seaport to inland ports

[39, 45, 157], and carbon emission [155, 71, 25].

Different from the studies discussed above, our study captures different re-

alistic shallow draft inland waterway port-related features (e.g., waterlevel fluc-

tuation, delay in locks and dams, port congestion, towboat and barge assign-

ment decisions, barge availability and maintenance) and magnifies their impact
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on the overall supply chain system performance. Note that till now a number

of existing studies in the literature consider inland waterway ports as a medium

of transportation while designing a supply chain network, examples include but

not limited to biomass supply chain (e.g., [109, 79, 80]), coal supply chain (e.g.,

[35, 47, 62]), grain supply chain (e.g., [88, 10, 31]), and many other application ar-

eas. However, very few studies have captured the true characteristics of the inland

waterway transportation (e.g., water level fluctuation, barge/towboat assignment

decisions, barge availability and maintenance) while solving a network designing

problem. Another important feature of our model is the consideration of con-

gestion caused by the seasonality of the supplies (primarily, agricultural products

as handled most by the inland waterway ports), waterlevel fluctuation, unavail-

ability of resources (primarily, caused by barge availability and frequent main-

tenance needs), delay in locks and dams, limited service capacity in the ports,

and many others. Though a rich stream of research available in the literature

to efficiently manage congestion in diversified fields, including traffic networks

[149, 101], telecommunication networks [143], service networks [3], and biomass

supply chain networks [78, 106], and more specific to maritime ports [156, 38], wa-

terways [154], and river ports [123], none of the studies manage congestion for a

shallow draft inland waterway port and its possible impact to the overall supply

chain system performance.
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3.3 Problem Description and Model Formulation

This section presents a two-stage stochastic programming model formulation

for the design and management of an shallow draft inland waterway transportation-

based logistics network while stochastic nature of commodity supply and water-

level fluctuations are taken into consideration. Further, the model attempts to

minimize the sudden congestion that may possibly arise due to water-level and

commodity supply fluctuations. The main objective of our model is to jointly opti-

mize tripwise towboat and barge assignment decisions and different supply chain

decisions (e.g., inventory, transportation decisions) in such a way that the overall

system cost can be minimized. Figure 3.1 illustrates a simplified logistics network

consisting of three supply sites, two origin and three destination ports, and four

markets. For simplicity in the remaining sections of this paper, we shall refer shal-

low draft inland ports as inland waterway ports.

Consider a logistics network consisting of a set of supply sites I = {1, 2, 3, ..., I},

set of origin ports J = {1, 2, 3, ..., J}, set of destination ports K = {1, 2, 3, ..., K},

and a set of markets G = {1, 2, 3, ..., G}. LetM = {1, 2, 3, ..., M} be the set of com-

modities that need to be transported along this logistics network over a predeter-

mined set of time periods T = {1, 2, 3, ..., T}. Note that to handle the appropriate

interconnections between the source and destination pairs, we introduce a num-

ber of subsets (e.g., Ij, Ig, Ji, Jk, Kj, Kg, Gk, and Gi) in our model. For instance,
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Figure 3.1

Illustration of an inland waterway transportation network

set Ij represents the subset of supply sites connected to port j ∈ J . We use the

similar convention to define other subsets. To account for different scenarios of

water-level and commodity supply fluctuations, we introduce scenario set ω ∈ Ω

where ρω defines probability of a given realization and ∑ω∈Ω ρω = 1.

Each supply site i ∈ I produces a stochastic amount of commodity ϕmitω of

type m ∈ M at time period t ∈ T under scenario ω ∈ Ω. Suppliers have the

option to send the commodities directly from a supply site i ∈ I or via an inland

waterway transportation network, primarily through origin and destination ports

J and K, to a market g ∈ G. The transportation distance between a supplier i ∈ I

and an origin port j ∈ J is usually short. Therefore, truck is preferred to carry
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commodities between these arcs (i, j) ∈ (I ,J ) by incurring an unit transportation

cost of cmijt. Each shipment from the supply sites are consolidated in any origin

port j ∈ J before being delivered to a destination port k ∈ K. We assume that a set

of towboats S = {1, 2, 3, ..., S} and barges B = {1, 2, 3, ..., B} are available to carry

commodities from any pair (j, k) ∈ (J ,K) of the origin-destination ports. Note

that we sort set S based on the capabilities of the towboats (e.g., towboat 1 in set

S is the least powerful towboat while S to represent the most powerful towboat).

Based on the capabilities, we denote δs and δs to be the maximum and minimum

number of barges that can be carried out by a towboat s ∈ S in a single trip. Let ψst

and ηmbt be the fixed cost associated with using a towboat s ∈ S and loading and

unloading commodity m ∈ M in barge b ∈ B at time period t ∈ T . Each barge b ∈

B is restricted to a weight and volume carrying capacity of wb and vb, respectively.

We further denote cmbsjkt to be the unit cost of transporting commodity m ∈ M

using barge b ∈ B connected with a towboat s ∈ S along arc (j, k) ∈ (J ,K)

at time period t ∈ T . Both the barges and towboats need to undergo periodic

maintenance. This is captured via introducing binary availability parameters abjt

and asjt, respectively. Finally, we define cmbsjkt to be the unit cost of transporting

commodity m ∈ M using barge b ∈ B connected with a towboat s ∈ S along arc

(j, k) ∈ (J ,K) at time period t ∈ T .

Each port j ∈ J ⋃K, is restricted to a maximum of commodity processing ca-

pacity of cjt and storage capacity of hj. Let hmjt be the unit inventory holding cost

for commodity m ∈ M in port j ∈ J ⋃K at time period t ∈ T . We further de-
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fine αm to capture the deterioration rate of carrying commodity m ∈ M between

two consecutive time periods. We also introduce a set Njk = {1, 2, 3, ..., njk} to

capture the possible trips that can be made by a towboat between each origin-

destination port (j, k) ∈ (J ,K). Note that due to dredging effect, the weight car-

rying capacity of a barge wb as well as the possible number of trips between each

origin-destination port, denoted by parameter τjkt, at time period t ∈ T may vary.

We now first define three parameters wjtω, wktω, and wjktω to denote the maximum

weight carrying capacity at port j ∈ J ⋃K and wjktω the allowable weight that can

be carried between the channel (j, k) ∈ (J ,K) at time period t ∈ T under scenario

ω ∈ Ω. It is observed that the depth of navigation channel near ports or the water-

body that connects a source-destination port may vary in different time period of

the year depending upon the amount of sediment, silt, or mud accumulated in the

waterbed. When this accumulation is high in any portion of the waterway (e.g.,

near ports or between two connecting ports), it raises the height of the waterbed

and results a decrease in the water depth. Unfortunately, when the reduction of

this water level becomes too intense, it seriously impacts the transportation of

shallow draft water vessels through the channel. Resultantly, the barges are now

restricted to carry commodities below to their designed weight carrying capacity

of wb. In practice, the maximum effective weight that a barge b ∈ B can carry under

this restriction would be the minimum weight between the weight capacity near

origin and destination ports, namely, wjtω and wktω, and the channel between

each origin-destination ports (j, k) ∈ (J ,K), namely, wjktω, i.e., min{wjktω, wb}
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where wjktω := min{wjtω, wjktω, wktω}. Further, due to the unpredictability to ac-

curately estimate this restriction, we consider wjktω to be a stochastic parameter in

our proposed model formulation. Finally, in addition to carrying the commodi-

ties through the inland waterway transportation, we also assume that the demand

for commodities at the markets, denoted by dmgt, can be satisfied either via direct

shipments from the supplier sites (primarily via trucks) or via an external source

by paying a unit penalty cost of πmgt. We now summarize the following notations

for our proposed mathematical model formulation.

Sets:

• I : set of supply sites, i ∈ I

• J : set of origin ports, j ∈ J

• K: set of destination ports, k ∈ K

• G: set of markets, g ∈ G

• M: set of commodities, m ∈ M

• S : set of towboats, s ∈ S

• B: set of barges, b ∈ B

• Njk: set of trips along arc (j, k) ∈ (J ,K), n ∈ Njk

• T : set of time periods, t ∈ T

• Ij: set of supply sites connected to port j, ∀j ∈ J

• Ig: set of supply sites connected to market g, ∀g ∈ G

• Ji: set of origin ports connected to supply site i, ∀i ∈ I

• Jk: set of origin ports connected to destination port k, ∀k ∈ K

• Kj: set of destination ports connected to origin port j, ∀j ∈ J

• Kg: set of destination ports connected to market g, ∀g ∈ G

• Gk: set of markets connected to destination port k, ∀k ∈ K
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• Gi: set of markets connected to destination port i, ∀i ∈ I

• Ω: set of possible scenarios ω, ∀ω ∈ Ω

Parameters:

• ϕmitω: amount of product of type m ∈ M available in supply site i ∈ I at
time period t ∈ T under scenario ω ∈ Ω

• ψst: fixed cost of using towboat s ∈ S at time period t ∈ T

• ηmbt: fixed cost for loading and unloading commodity m ∈ M in barge b ∈ B
at time period t ∈ T

• cmigt: unit cost of transporting commodity m ∈ M along arc (i, g) ∈ (I ,G)
at time period t ∈ T

• cme f t: unit cost of transporting commodity m ∈ M along arc (e, f ) ∈ (I ⋃K,J ⋃ G)
at time period t ∈ T

• cmbsjkt: unit cost of transporting commodity m ∈ M using barge b ∈ B of
towboat s ∈ S along arc (j, k) ∈ (J ,K) at time period t ∈ T

• co
jt/co

kt: congestion cost in port j ∈ J ⋃K at time t ∈ T

• hj: commodity storage capacity at port j ∈ J ⋃K
• dmgt: demand for commodity of type m ∈ M in market g ∈ G at time period

t ∈ T

• αm: deterioration rate of commodity m ∈ M

• asjt, abjt: binary availability of towboat and barge

• δs, δs: maximum/minimum number of barges to carry by towboat s ∈ S

• wjktω: the minimum of {wjtω, wjktω, wktω} where wjtω and wktω indicate the
maximum weight carrying capacity at port j ∈ J ⋃K and wjktω the allow-
able weight that can be carried between the channel (j, k) ∈ (J ,K) at time
period t ∈ T under scenario ω ∈ Ω. The last weight (wjktω) depends on
the depth of the waterway and should not exceed the minimal water-level
between the origin-destination ports

• ρm: density of commodity m ∈ M

• vb: volume capacity of barge b ∈ B
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• wb: weight capacity of a barge b ∈ B

• πmgt: unit penalty cost of not satisfying demand for commodity m ∈ M in
market g ∈ G at time period t ∈ T

• hmjt: unit inventory holding cost for commodity m ∈ M in port j ∈ J ⋃K
at time period t ∈ T

• θjt: total number of barges available in port j ∈ J at time period t ∈ T

• τjkt: maximum number of trips that can be made along arc (j, k) ∈ (J ,K) at
time period t

• cjt, ckt: commodity processing capacity of port j ∈ J ⋃K at time period
t ∈ T

• tl, tu: average loading and unloading time of a barge

• ∆: average delay in locks

• ljk: number of locks between origin port j ∈ J and destination port k ∈ K

• djk: distance between origin port j ∈ J and destination port k ∈ K

• v̄st: average speed of towboat s ∈ S at time period t ∈ T

• tjk: allowable transport time limit between each origin port j ∈ J to destina-
tion port k ∈ K

• ρω: probability of scenario ω ∈ Ω

First Stage Decision Variables:

• Ysnjkt: 1 if a towboat s ∈ S is used in arc (j, k) ∈ (J ,K) for trip n ∈ Njk at
time period t ∈ T ; 0 otherwise

• Ymbsjt: 1 if commodity m ∈ M is carried on barge b ∈ B of towboat s ∈ S
from port j ∈ J at time period t ∈ T ; 0 otherwise

Second Stage Decision Variables:

• Xmigtω: amount of commodities of type m ∈ M transported along arc (i, g) ∈
(I ⋃ G) at time period t ∈ T under scenario ω ∈ Ω

• Xme f tω: amount of commodities of type m ∈ M transported along arc (e, f ) ∈
(I ⋃K,J ⋃ G) at time period t ∈ T under scenario ω ∈ Ω
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• Xmbsnjktω: amount of commodities of type m ∈ M transported using barge
b ∈ B of towboat s ∈ S of trip n ∈ Njk along arc (j, k) ∈ (J ,K) at time
period t ∈ T under scenario ω ∈ Ω

• Hmjtω: amount of commodities of type m ∈ M stored in port j ∈ J ⋃K at
time period t ∈ T under scenario ω ∈ Ω

• Umgtω: amount of commodities of type m ∈ M shortage in market g ∈ G at
time period t ∈ T under scenario ω ∈ Ω

We now introduce the following first and second-stage decision variables for

our proposed two-stage stochastic programming model formulation. The first-

stage decision variables Y1 := {Ysnjkt|∀s ∈ S , n ∈ Njk, j ∈ J , k ∈ Kj, t ∈ T } and

Y2 := {Ymbsjt|∀m ∈ M, b ∈ B, s ∈ S , j ∈ J , t ∈ T } determine which towboat to

use between any origin-destination pair in a given time period and which barge to

use for carrying any particular product at any given origin port, respectively, i.e.,

Ysnjkt =


1 if a towboat s is used in arc (j, k) ∈ (J ,K) for trip n at time period t

0 otherwise;

Ymbsjt =


1 if barge b connected to towboat s is used to carry commodity m

at port j in time period t

0 otherwise;

The second-stage decision variables X1 := {Xmigtω|∀m ∈ M, (i, g) ∈ (I ⋃ G), t ∈

T , ω ∈ Ω} determine the amount of commodities of type m ∈ M transported

along arc (i, g) ∈ (I ⋃ G) at time period t ∈ T under scenario ω ∈ Ω; X2 :=

{Xme f tω|∀m ∈ M, (e, f ) ∈ (I ⋃K,J ⋃ G), t ∈ T , ω ∈ Ω} to denote the amount

of commodities of type m ∈ M transported along arc (e, f ) ∈ (I ⋃K,J ⋃ G) at
92



www.manaraa.com

time period t ∈ T under scenario ω ∈ Ω; X3 := {Xmbsnjktω|∀m ∈ M, b ∈ B, s ∈

S , n ∈ Njk, (j, k) ∈ (J ,K), t ∈ T , ω ∈ Ω} to denote the amount of commodi-

ties of type m ∈ M transported using barge b ∈ B of towboat s ∈ S of trip

n ∈ Njk along arc (j, k) ∈ (J ,K) at time period t ∈ T under scenario ω ∈ Ω;

H := {Hmjtω|∀m ∈ M, j ∈ J ⋃K, t ∈ T , ω ∈ Ω} to denote the amount of com-

modities of type m ∈ M stored in port j ∈ J ⋃K at time period t ∈ T under

scenario ω ∈ Ω; and U := {Umgtω} to denote the amount of commodities of type

m ∈ M shortage in market g ∈ G at time period t ∈ T under scenario ω ∈ Ω. For

notation simplicity, we define Y as Y := Y1⋃Y2 and X as X := X1⋃X2⋃X3.

Inland waterway ports handle a number of agricultural products (e.g., corn,

rice, woodchips) which are highly seasonal in nature. For instance, rice is avail-

able only between August to October in a given calendar year. Likewise, corn is

harvested between mid-July to late November of each year [133]. Such season-

ality coupled with stochastic availability of the commodities can create a unique

challenge for port managers from the managing and handling viewpoint. The

most predominant impact would be the waiting time for the trucks to be ser-

viced in a given port during peak harvesting seasons. This results congestion in

the ports which eventually impairs the shipment delivery time and hence increase

the overall transportation cost. To realistically capture this effect, we borrow the

congestion function proposed by Elhedhli and Wu [34] to add in the objective func-

tion of our proposed model formulation and to evaluate the performance of the

inland waterway transportation network under this critical consideration. Es-
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sentially, it can be stated that the average waiting time for the commodities in-

creases as the total commodity flow approaches very close to the capacities (cjt, ckt)

of a given port j ∈ J ⋃K. Mathematically, this term can be represented as:( ∑m∈M∑b∈B ∑s∈S ∑n∈Njk ∑k∈K Xmbsnjktω

cjt −∑m∈M∑b∈B ∑s∈S ∑n∈Njk ∑k∈K Xmbsnjktω

)
for port j ∈ J at time period

t ∈ T and under scenario ω ∈ Ω. Note that we represent cjt = c̃jt + ∆ where

c̃jt is the actual processing capacity for port j ∈ J in time t ∈ T and ∆ is a small

number. Clearly, if the total commodity flow Xmbsnjktω exceeds c̃jt i.e., approach-

ing very close to cjt, ratio of the equation will increase exponentially and thus will

realistically address the impact of congestion to a given port. Likewise, conges-

tion function for port k ∈ K at time t ∈ T under scenario ω ∈ Ω can be repre-

sented as:
(

∑m∈M∑g∈G Xmkgtω

ckt −∑m∈M∑g∈G Xmkgtω

)
. Let co

jt and co
kt be the congestion cost in

port j ∈ J ⋃K at time period t ∈ T . Therefore, for each t ∈ T and ω ∈ Ω, the

overall system-wide congestion cost can be represented as follows:

∑
j∈J

co
jt

( ∑m∈M∑b∈B ∑s∈S ∑n∈Njk ∑k∈K Xmbsnjktω

cjt −∑m∈M∑b∈B ∑s∈S ∑n∈Njk ∑k∈K Xmbsnjktω

)

+ ∑
k∈K

co
kt

(
∑m∈M∑g∈G Xmkgtω

ckt −∑m∈M∑g∈G Xmkgtω

)

We note that in addition to capturing congestion in the ports during peak sup-

ply seasons, towboats may also experience congestion in the locks between two

connecting ports. However, to simplify the modeling process, in this study we

ignore the congestion caused by the locks between two connecting ports. Mean-

while, total travel time for a towboat between each source-destination pair is ap-
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proximated and a feasible time limit is provided. Let ∆, ljk, and djk be the average

delay in locks, the number of locks between each origin-destination port, and the

traveling distance between each pair of ports (j, k) ∈ (J ,K). We further denote

v̄st to be the average speed of towboat s ∈ S at time period t ∈ T and tl and tu to

be the average loading and unloading time for a barge. We can then approximate

the total travel time for a towboat s ∈ S in trip n ∈ Njk between each origin desti-

nation port (j, k) ∈ (J ,K) at time t ∈ T as:
{

∑m∈M∑b∈B(tl + tu)Ymbsjt + (
djk
v̄st

+

∆ljk)Ysnjkt

}
, and we assume that this travel time should be restricted by a feasible

time limit tjk.

We are now ready to introduce the objective function of our proposed two-

stage stochastic programming mathematical formulation, referred to as [IPM].

The model introduces two uncertain parameters, supply availability (φmitω), and

allowable weight limit in waterway connecting ports (wjktω). To capture the in-

teraction between the stochastic parameters we define ζ as the vector of these un-

certain parameters, i.e., ζ = (φ, w), and ζω is a given realization of the uncertain

parameters, ζω ∈ ζ. The decisions about towboat and barge selection (Y) are made

prior to a realization of any stochastic event. However, after the stochasticity is re-

vealed, the second-stage decisions such as the transportation (X), storage (H), and

95



www.manaraa.com

shortage (U) decisions are made. The proposed mathematical model is now given

below.

[IPM] Minimize
Y

∑
s∈S

∑
j∈J

∑
t∈T

(
∑

n∈Njk

∑
k∈Kj

ψstYsnjkt + ∑
m∈M

∑
b∈B

ηmbtYmbsjt

)

+ ∑
ω∈Ω

ρωQ(Y, ζω)

(3.1)

subject to

∑
m∈M

Ymbsjt ≤ 1 ∀b ∈ B, s ∈ S , j ∈ J , t ∈ T (3.2)

∑
s∈S

Ysnjkt ≤ 1 ∀n ∈ Njk, j ∈ J , k ∈ Kj, t ∈ T (3.3)

∑
n∈Njk

∑
k∈Kj

δsYsnjkt ≤ ∑
m∈M

∑
b∈B

Ymbsjt ≤ ∑
n∈Njk

∑
k∈Kj

δsYsnjkt ∀s ∈ S ,

j ∈ J , t ∈ T (3.4)

∑
s∈S

∑
n∈Njk

Ysnjkt ≤ τjkt ∀j ∈ J , k ∈ Kj, t ∈ T (3.5)

∑
m∈M

∑
b∈B

∑
s∈S

Ymbsjt ≤ θjt ∀j ∈ J , t ∈ T (3.6)

∑
n∈Njk

∑
k∈Kj

Ysnjkt ≤ asjt ∀s ∈ S , j ∈ J , t ∈ T (3.7)

∑
m∈M

∑
s∈S

Ymbsjt ≤ abjt ∀b ∈ B, j ∈ J , t ∈ T (3.8)

∑
m∈M

∑
b∈B

(tl + tu)Ymbsjt ≤ tjk − (
djk

v̄st
+ ∆ljk)Ysnjkt ∀s ∈ S , n ∈ Njk,

j ∈ J , k ∈ Kj, t ∈ T (3.9)

Ymbsjt ∈ {0, 1} ∀m ∈ M, b ∈ B, s ∈ S , j ∈ J , t ∈ T (3.10)

Ysnjkt ∈ {0, 1} ∀s ∈ S , n ∈ Njk, j ∈ J , k ∈ Kj, t ∈ T (3.11)

with Q(Y, ζω) being the solution of the following second-stage problem:
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Q(Y, ζω) = Minimize
X,H,U

∑
t∈T

(
∑

(e, f )∈(I ⋃K,J ⋃ G) cme f tXme f tω + ∑
(i,g)∈(I ,G)

cmigtXmigtω

+ ∑
b∈B

∑
s∈S

∑
n∈Njk

∑
(j,k)∈(J ,K)

cmbsjktXmbsnjktω + ∑
j∈J ⋃K hmjtHmjtω

+ ∑
j∈J

co
jt

( ∑m∈M∑b∈B ∑s∈S ∑n∈Njk ∑k∈K Xmbsnjktω

cjt −∑m∈M∑b∈B ∑s∈S ∑n∈Njk ∑k∈K Xmbsnjktω

)
+

∑
k∈K

co
kt

(
∑m∈M∑g∈G Xmkgtω

ckt −∑m∈M∑g∈G Xmkgtω

)
+ ∑

g∈G
πmgtUmgtω

)
(3.12)

subject to

∑
j∈Ji

Xmijtω + ∑
g∈Gi

Xmigtω ≤ ϕmitω∀m ∈ M, i ∈ I , t ∈ T , ω ∈ Ω (3.13)

∑
i∈Ij

Xmijtω + (1− αm)Hmj,t−1,ω = ∑
b∈B

∑
s∈S

∑
n∈Njk

∑
k∈Kj

Xmbsnjktω + Hmjtω

∀m ∈ M, j ∈ J , t ∈ T , ω ∈ Ω (3.14)

∑
b∈B

∑
s∈S

∑
n∈Njk

∑
j∈Jk

Xmbsnjktω = ∑
g∈Gk

Xmkgtω + Hmktω − (1− αm)Hmk,t−1,ω

∀m ∈ M, k ∈ K, t ∈ T , ω ∈ Ω (3.15)

∑
i∈Ig

Xmigtω + ∑
k∈Kg

Xmkgtω + Umgtω = dmgt∀m ∈ M, g ∈ G, t ∈ T , ω ∈ Ω (3.16)

∑
m∈M

Hmjtω ≤ hj∀j ∈ J
⋃
K, t ∈ T , ω ∈ Ω (3.17)

∑
n∈Njk

Xmbsnjktω ≤ min{wjktω, wb}Ymbsjt∀m ∈ M, b ∈ B,

s ∈ S , j ∈ J , k ∈ Kj, t ∈ T , ω ∈ Ω (3.18)

∑
n∈Njk

∑
k∈Kj

(Xmbsnjktω

ρm

)
≤ vbYmbsjt∀m ∈ M, b ∈ B, s ∈ S ,

j ∈ J , t ∈ T , ω ∈ Ω (3.19)
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∑
m∈M

∑
b∈B

∑
s∈S

∑
n∈Njk

∑
k∈Kj

Xmbsnjktω≤cjt∀j ∈ J , t ∈ T , ω ∈ Ω (3.20)

∑
m∈M

∑
g∈Gk

Xmkgtω≤ckt∀k ∈ K, t ∈ T , ω ∈ Ω(3.21)

Xmigtω, Xmjkbsntω, Xmkgtω, Hmjtω, Hmktω, Umgtω∈R+ (3.22)

The objective function (3.1) is the sum of the first-stage costs and the expected

second-stage costs. The first-stage costs represent the fixed costs associated with

using towboats and loading and unloading commodities into the barges. Con-

straints (3.2) ensure that only one commodity of type m ∈ M can be loaded to a

given barge b ∈ B in time period t ∈ T . Constraints (3.3) restrict the usage of only

one towboat of type s ∈ S in a given trip n ∈ Njk between each origin-destination

pair at time period t ∈ T . Constraints (3.4) set restriction on the minimum (δs)

and maximum (δs) number of barges that can be connected with a given towboat

s ∈ S . Constraints (3.5) restrict the maximum number of possible trips (τjkt) be-

tween each origin-destination port (j, k) ∈ (J ,K) in a given time period t ∈ T .

Constraints (3.6) indicate the maximum availability of barges (θjt) in a given port

j ∈ J at time period t ∈ T . The unavailability of towboat and barge, primar-

ily due to periodic maintenance activities, are captured by binary parameters asjt

and abjt in constraints (3.7) and (3.8). Constraints (3.9) restrict the maximum time

availability (tjk) for a towboat s ∈ S to travel between each origin-destination port

(j, k) ∈ (J ,K) in a given time period t ∈ T . Finally, constraints (3.10) and (3.11)

set the integrality constraints.
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The objective function of the second-stage costs consists of seven terms: the

first three terms represent the transportation costs of flowing commodities across

the entire network; the fourth and fifth terms represent respectively the cost associ-

ated with storing commodities at the source and destination ports and commodity

shortage costs at the markets; finally, the last two terms in the objective function

capture the congestion cost at the source and destination ports. Constraints (3.13)

restrict the availability (ϕmitω) of commodity m ∈ M at a supply site i ∈ I in time

period t ∈ T under scenario ω ∈ Ω. Constraints (3.14) and (3.15) are the flow bal-

ance constraints which ensure that at a given time t ∈ T , commodity m ∈ M can

be either stored or transported in a source or a destination port j ∈ J ⋃K. Con-

straints (3.16) ensure that at a given time period t ∈ T , the demand (dmgt) for com-

modity m ∈ M can be satisfied either through the inland waterway transportation

network or through an external supply source via paying a higher penalty cost of

πmgt. Constraints (3.17) set the storage capacity of a port j ∈ J ⋃K to hj. Con-

straints (3.18) and (3.19) handle the weight and volumetric capacity restriction for

a barge b ∈ B. Note that the dredging impact is captured via constraints (3.18)

where it is shown that at each time period t ∈ T , a barge b ∈ B is restricted to

carry the minimum of {wjktω, wb} amount of commodity between each source-

destination pair. Constraints (3.20) and (3.21) set commodity processing capacity

of port j ∈ J ⋃K at time period t ∈ T . Finally, constraints (3.22) are the standard

non-negativity constraints.
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3.3.1 Linear Reformulation

The presence of congestion terms in the objective function (3.12) makes the

model [IPM] nonlinear. To linearize these nonlinear congestion terms, we adopt

the linearization technique introduced by Elhedhli and Wu [34]. This subsection il-

lustrates the step by step linearization process of the first congestion term in (3.12).

Let us first introduce a non-negative auxiliary variable R := {Rjtω}j∈J ,t∈T ,ω∈Ω

such that:

Rjtω=

( ∑m∈M∑b∈B ∑s∈S ∑n∈Njk ∑k∈K Xmbsnjktω

cjt −∑m∈M∑b∈B ∑s∈S ∑n∈Njk ∑k∈K Xmbsnjktω

)
∀j ∈ J , t ∈ T , ω ∈ Ω (3.23)

The terms in constraints (3.23) can be rearranged as follows:

∑
m∈M

∑
b∈B

∑
s∈S

∑
n∈Njk

∑
k∈K

Xmbsnjktω =

(
Rjtω

1 + Rjtω

)
cjt∀j ∈ J , t ∈ T , ω ∈ Ω (3.24)

Lemma 1 The function f (Rjtω) :=
(

Rjtω

1 + Rjtω

)
is concave in Rjtω ∈ [0, ∞).

Proof: Differentiating function f (Rjtω) with respect to {Rjtω}j∈J ,t∈T ,ω∈Ω, we ob-

tain the following first and second derivatives:

f ′(Rjtω) =
δ

δRjtω

(
Rjtω

1 + Rjtω

)
=

1
(1 + Rjtω)2 ≥ 0

f ′′(Rjtω) =
δ2

δR2
jtω

(
Rjtω

1 + Rjtω

)
=

−2
(1 + Rjtω)3 ≤ 0

Since the first derivative is positive and the second one is negative, we can con-

clude that the function f (Rjtω) is concave in Rjtω ∈ [0, ∞]

Lemma 1 proves that the function f (Rjtω) is concave. Note that this function can

be outer approximated by a set of tangent cutting planes, denoted by set P1. For
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a given set of points p1 ∈ P1, we outer approximate the function f (Rjtω) using

Taylor series approximation and by a set of piecewise linear functions that are

tangent to f (Rjtω) at points {Rp1
jtω}p1∈H1 as follows:

f (Rjtω) ≈ f (Rp1
jtω) + f ′(Rp1

jtω)(Rjtω − Rp1
jtω)

≈
Rjtω

(1 + Rp1
jtω)

2
+

(Rp1
jtω)

2

(1 + Rp1
jtω)

2

since f (Rjtω) is concave in Rjtω ∈ [0, ∞], the function can be expressed as follows:

Rjtω

(1 + Rjtω)
= min

p1∈P1

{
Rjtω

(1 + Rp1
jtω)

2
+

(Rp1
jtω)

2

(1 + Rp1
jtω)

2

}

This is equivalent to the following set of constraints :

Rjtω

(1 + Rjtω)
≤

Rjtω

(1 + Rp1
jtω)

2
+

(Rp1
jtω)

2

(1 + Rp1
jtω)

2
(3.25)

where {Rp1
jtω}j∈J ,t∈T ,ω∈Ω are the set of points used for approximating (3.25). We

now derive constraints (3.26) from constraints (3.24) and (3.25) which are added to

model [IPM] for linearizing the first congestion function in objective (3.12).

∑
m∈M

∑
b∈B

∑
s∈S

∑
n∈Njk

∑
k∈K

Xmbsnjktω ≤
(

Rjtω

(1 + Rp1
jtω)

2

)
cjt +

( Rp1
jtω

1 + Rp1
jtω

)2

cjt (3.26)

∀j ∈ J , t ∈ T , ω ∈ Ω, p1 ∈ P1

Rjtω ∈ R+ ∀j ∈ J , t ∈ T , ω ∈ Ω (3.27)

Following the same approach, we can introduce another non-negative auxiliary

variable W := {Wktω}k∈K,t∈T ,ω∈Ω for the second congestion term in objective

(3.12). Likewise, constraints (3.28) and (3.29) are added to model [IPM] for lin-

101



www.manaraa.com

earizing the second congestion term in objective (3.12) where {Wp2
ktω}k∈K,t∈T ,ω∈Ω,p2∈P2

are the set of points used for approximating (3.28).

∑
m∈M

∑
g∈G

Xmkgtω ≤
(

Wktω

(1 + Wp2
ktω)

2

)
ckt +

(
Wp2

ktω

1 + Wp2
ktω

)2

ckt

∀k ∈ K, t ∈ T , ω ∈ Ω, p2 ∈ P2 (3.28)

Wktω ∈ R+∀k ∈ K, t ∈ T , ω ∈ Ω (3.29)

Model [IPM] can now be linearized as follows, referred to as [LIPM]:

[LIPM] Minimize
Y

∑
s∈S

∑
j∈J

∑
t∈T

(
∑

n∈Njk

∑
k∈Kj

ψstYsnjkt + ∑
m∈M

∑
b∈B

ηmbtYmbsjt

)

+ ∑
ω∈Ω

ρωQ(Y, ζω)

subject to (3.2)- (3.11) and with Q(Y, ζω) being the solution of the following lin-

earized second-stage problem:

Q(Y, ζω) = Minimize
X,H,U

∑
t∈T

(
∑

(e, f )∈(I ⋃K,J ⋃ G) cme f tXme f tω + ∑
(i,g)∈(I ,G)

cmigtXmigtω

+ ∑
b∈B

∑
s∈S

∑
n∈Njk

∑
(j,k)∈(J ,K)

cmbsjktXmbsnjktω + ∑
j∈J ⋃K hmjtHmjtω

+ ∑
g∈G

πmgtUmgtω + ∑
j∈J

co
jtRjtω + ∑

k∈K
co

ktWktω

)
(3.30)

subject to (3.13)-(3.22) and (3.26)-(3.29). We further denote [LIPM] as [LIPM](P1,P2)

where it can be shown below in Proposition 1 that there exist at least one p1 ∈ P1

and one p2 ∈ P2 for which constraints (3.26) and (3.28) can be solved at equality.

Proposition 1: There exists at least one constraint in (3.26) and one in (3.28) for which

model [LIPM](P1,P2) will be binding at optimality.
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Proof: We first prove that ∃p1 ∈ P1 in (3.26) for which [LIPM](P1,P2) will be

binding at optimality. Likewise, one can similarly prove that ∃p2 ∈ P2 in (3.28)

for which [LIPM](P1,P2) will also be binding at optimality. After rearranging the

terms, constraints (3.26) can be rewritten as follows:

Rjtω ≥ (1 + Rp1
jtω)

2
(∑m∈M∑b∈B ∑s∈S ∑n∈Njk ∑k∈K Xmjkbsntω

cjt

)
− (Rp1

jtω)
2

∀j ∈ J , t ∈ T , ω ∈ Ω, p1 ∈ P1 (3.31)

Since {Rjtω}j∈J ,t∈T ,ω∈Ω holds positive coefficient in the objective function (3.30),

[LIPM](P1,P2) only reaches to an optimum value when Rjtω is minimized. This

indicates that ∀j ∈ J , t ∈ T , ω ∈ Ω, ∃p1 ∈ P1 for which (3.31) holds with equal-

ity if (1 + Rp1
jtω)

2
(∑m∈M∑b∈B ∑s∈S ∑n∈Njk ∑k∈K Xmjkbsntω

cjt

)
− (Rp1

jtω)
2 ≥ 0, else

Rjtω = 0. Let $jtω be the average utilization of port j ∈ J which can be defined as

follows:

$jtω :=
(∑m∈M∑b∈B ∑s∈S ∑n∈Njk ∑k∈K Xmjkbsntω

cjt

)
The above inequalities can be expanded in further as follows:

0 ≤ (1 + Rp1
jtω)

2
(∑m∈M∑b∈B ∑s∈S ∑n∈Njk ∑k∈K Xmjkbsntω

cjt

)
− (Rp1

jtω)
2

= (1 + Rp1
jtω)

2$jtω − (Rp1
jtω)

2

= ($jtω − 1)(Rp1
jtω)

2 + 2$jtωRp1
jtω − $jtω

103



www.manaraa.com

Applying quadratic equation rule, we see that Rp1
jtω can be bounded as follows:

Rp1
jtω ∈[−$jtω −

√
$jtω

1− $jtω
,

$jtω +
√

$jtω

1− $jtω

]
∀p1 ∈ P1.

For 0 < $jtω < 1, the term
(−$jtω −

√
$jtω

1− $jtω

)
will yield a negative value; hence,

the model will turn out to be infeasible. Therefore, without any loss of generality,

we can then write Rp1
jtω ∈

[
0,

$jtω +
√

$jtω

1− $jtω

]
; ∀p1 ∈ P1. Further, to prove that

∃p1 ∈ P1 for which (3.26) holds with equality, we then need to show that Rp1
jtω ∈[

0,
$jtω +

√
$jtω

1− $jtω

]
. Note that if Rjtω becomes positive via constraints (3.18) and

(3.23), then we can write the following:

0 ≤ Rp1
jtω ≈ Rjtω =

$jtω

1− $jtω
≤

$jtω +
√

$jtω

1− $jtω

This proves that ∀j ∈ J , t ∈ T , ω ∈ Ω, ∃p1 ∈ P1 for which, at optimality, (3.26)

holds with equality.

3.4 Solution Approach

By setting |Ω| = |T | = |Njk| = |S| = |B| = 1, it can be shown that the re-

formulated model [LIPM] is essentially a variation of the fixed charge network flow

problem which is already known to be an NP-hard problem [12, 65]. Therefore,

state-of-the-art commercial solvers (e.g., Gurobi, CPLEX) will find it difficulty to

solve large instances of [LIPM], as we also experienced in our computational re-

sults discussed in Section 5.5.3. To alleviate this computational challenge, we pro-

pose a parallelized hybrid decomposition algorithm based on constraint generation

algorithm embedded with a sample average approximation algorithm and a modified
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L-shaped algorithm, in order to solve the model to optimum (or near-optimum) in

a reasonable timeframe.

3.4.1 Constraint Generation Algorithm

Model [LIPM] generates a pool of constraints given by the equations (3.26)

and (3.28). Evaluating the model by considering all these constraints at a time

can be considered extremely challenging. Therefore, we introduce the constraint

generation (CG) algorithm [153, 143] that can efficiently and effectively solve model

[LIPM] despite being generating large number of constraints at once. Essentially,

the algorithm starts by solving model [LIPM] with a subset of constraints obtained

from equations (3.26) and (3.28) while additional constraints are added to [LIPM]

per requirement. The algorithm terminates upon reaching the optimality gap to

an acceptable threshold limit. In case if the termination criterion is not met, a new

set of constraints are generated and added to [LIPM] and the process continues.

The algorithm is detailed as follows:

Let ν[LIPM] be the objective function value of problem [LIPM] and (Yq, Xq, Hq, Uq)

be it’s optimal solution. For any iteration q, we let LBq and UBq to represent the

lower and upper bound of the original problem [IPM]. We can then obtain the

lower and upper bound of the optimal objective function value of problem [IPM]

as follows:
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LBq = ν[LIPM](P q
1 ,P q

2 )

= ∑
t∈T

{
∑
s∈S

∑
j∈J

(
∑

n∈Njk

∑
k∈Kj

ψstYsnjkt + ∑
m∈M

∑
b∈B

ηmbtYmbsjt

)

+ ∑
ω∈Ω

ρω

(
∑

(e, f )∈(I ⋃K,J ⋃ G) cme f tXme f tω + ∑
(i,g)∈(I ,G)

cmigtXmigtω

+ ∑
b∈B

∑
s∈S

∑
n∈Njk

∑
(j,k)∈(J ,K)

cmbsjktXmbsnjktω + ∑
j∈J ⋃K hmjtHmjtω

+ ∑
g∈G

πmgtUmgtω + ∑
j∈J

co
jtRjtω + ∑

k∈K
co

ktWktω

)}
(3.32)

UBq = ∑
t∈T

{
∑
s∈S

∑
j∈J

(
∑

n∈Njk

∑
k∈Kj

ψstYsnjkt + ∑
m∈M

∑
b∈B

ηmbtYmbsjt

)
+ ∑

ω∈Ω
ρω

(
∑

(e, f )∈(I ⋃K,J ⋃ G) cme f tXme f tω + ∑
(i,g)∈(I ,G)

cmigtXmigtω +

∑
b∈B

∑
s∈S

∑
n∈Njk

∑
(j,k)∈(J ,K)

cmbsjktXmbsnjktω + ∑
j∈J ⋃K hmjtHmjtω + ∑

g∈G
πmgtUmgtω

+ ∑
j∈J

co
jt

( ∑m∈M∑b∈B ∑s∈S ∑n∈Njk ∑k∈K Xmbsnjktω

cjt −∑m∈M∑b∈B ∑s∈S ∑n∈Njk ∑k∈K Xmbsnjktω

)

+ ∑
k∈K

co
kt

(
∑m∈M∑g∈G Xmkgtω

ckt −∑m∈M∑g∈G Xmkgtω

))}
(3.33)

The validity of the lower and upper bound, provided by equations (3.32) and

(3.33), are given below in Proposition 2 and Proposition 3.

Proposition 2 For any given subset of points {Rp1
jtω}Pq

1⊂P1 and {Wp2
ktω}Pq

2⊂P2 , (3.32)

provides the lower bound of the optimal objective function value of [IPM].

Proof: Since [LIPM](P q
1 ,P q

2 ) is the relaxed version of problem [LIPM], ν[LIPM](P q
1 ,P q

2 )

provides a valid lower bound to the optimal objective function value of problem
106



www.manaraa.com

[LIPM]. Let ν[LIPM] and ν[IPM] to be the optimal objective function value ob-

tained from solving [LIPM] and [IPM], respectively. Therefore, we can state that

ν[LIPM](P q
1 ,P q

2 ) ≤ ν[LIPM]. Now, [LIPM] itself is an approximation of problem

[IPM] which implies that ν[LIPM](P q
1 ,P q

2 ) will also serve as a valid lower bound

of the optimal objective of the original problem [IPM]. Therefore, we see that the

following relationship holds: ν[LIPM](P q
1 ,P q

2 ) ≤ ν[LIPM]≤ ν[IPM].

Proposition 3 For any given subset of points {Rp1
jtω}Pq

1⊂P1 and {Wp2
ktω}Pq

2⊂P2 , (3.33)

provides the upper bound of the optimal objective function value of [IPM].

Proof: Problem [LIPM](P q
1 ,P q

2 ) includes all the constraints of original problem

[IPM]; therefore, any solution feasible to [LIPM](P q
1 ,P q

2 ) will also be a feasible

solution to [IPM]. This implies that the objective function value of [LIPM] (i.e.,

ν[LIPM]), evaluated at (Yq, Xq, Hq, Uq) (shown in (3.33)), provides an upper bound

to the optimal objective value of problem [IPM]. This completes the proof.

At the beginning of the CG algorithm subsets P q
1 ⊂ P1 and P q

2 ⊂ P2 of cuts are

generated where P q=1
1 and P q=1

2 can be empty or may contain some chosen initial

points. Let {Rp1
jtω}Pq

1⊂P1 and {Wp2
ktω}Pq

2⊂P2 be the initial set of points in P q
1 ⊂ P1

and P q
2 ⊂ P2 , respectively. These points are used to generate initial subset of

cuts that are essentially used to approximate the congestion functions f (Rjtω) and

f (Wktω), respectively. Having these cuts, the resulting solution of the problem

[LIMP] provides a valid lower bound (LBq) of the original problem [IMP] (proof

can be found in Proposition 1). Next, this solution is utilized in equation (3.33)

to obtain an upper bound (UBq) (proof can be found in Proposition 2) of the CG
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algorithm. The algorithm terminates when the gap between the UBq and LBq falls

below a prespecified threshold limit ε. If the termination criterion is not met, we

generate new sets of points {Rpnew
jtω } and {Wpnew

ktω } utilizing the current solution as

follows:

Rpnew
jtω =

∑m∈M∑b∈B ∑s∈S ∑n∈Njk ∑k∈K Xq
mbsnjktω

cjt −∑m∈M∑b∈B ∑s∈S ∑n∈Njk ∑k∈K Xq
mbsnjktω

and

Wpnew
ktω =

∑m∈M∑g∈G Xq
mkgtω

ckt −∑m∈M∑g∈G Xq
mkgtω

The pseudo-code of the CG algorithm is given in Algorithm 1.
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Algorithm 1: Constraint Generation Algorithm

Initialize, q← 1, ε, UBq ← +∞, LBq ← −∞

terminate← f alse

Choose an initial set of points {Rp1
jtω}Pq

1⊂P1 and {Wp2
ktω}Pq

2⊂P2

while terminate = false do

Solve [LIPM](P q
1 ,P q

2 ) to obtain ν[LIPM] (P q
1 ,P q

2 ) and (Yq, Xq, Hq, Uq)

Update the lower bound: LBq ← ν[LIPM] (P q
1 ,P q

2 )

Update the upper bound: UBq using equation (3.33)

if (UBq−LBq)
UBq ≤ ε then

terminate← true

else
Generate new points:

Rpnew
jtω =

∑m∈M∑b∈B ∑s∈S ∑n∈Njk ∑k∈K Xq
mbsnjktω

cjt −∑m∈M∑b∈B ∑s∈S ∑n∈Njk ∑k∈K Xq
mbsnjktω

Wpnew
ktω =

∑m∈M∑g∈G Xq
mkgtω

ckt −∑m∈M∑g∈G Xq
mkgtω

Rp1,q+1
jtω = Rp1,q

jtω
⋃{Rpnew

jtω }

Wp2,q+1
ktω = Wp2,q

ktω
⋃{Wpnew

ktω }

end

q← q + 1

end

Proposition 4 The proposed CG algorithm can be solved in a finite number of iterations.

Proof: In model [LIPM], variable {Xmbsnjktω} is bounded by constraints (3.18)-

(3.20). This implies that the values of {Rjtω}∀j∈J ,t∈T ,ω∈Ω will also be bounded,
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essentially ensured via constraints (3.23). To prove that the CG algorithm is ter-

minated in a finite number of iterations, we eventually need to show that the

{Rpnew
jtω }∀j∈J ,t∈T ,ω∈Ω values are not repeated in coming iterations. Let us define q

as an intermediate iteration of the CG algorithm when UBq > LBq. If (Yq, Xq, Hq, Uq)

be the solution to [LIPM](P q
1 ,P q

2 ), then the new point generated in this iteration

would be:

Rpnew
jtω =

( ∑m∈M∑b∈B ∑s∈S ∑n∈Njk ∑k∈K Xq
mbsnjktω

cjt −∑m∈M∑b∈B ∑s∈S ∑n∈Njk ∑k∈K Xq
mbsnjktω

)
∀j ∈ J , t ∈ T , ω ∈ Ω

Now consider that the {Rpnew
jtω }∀j∈J ,t∈T ,ω∈Ω values match with one of the val-

ues already generated in the prior iterations. The following relationship can be

obtained from constraints (3.25):

Rpnew
jtω

(1 + Rpnew
jtω )

≤ 1
(1 + Rpnew

jtω )2
Rq

jtω +
(Rpnew

jtω )2

(1 + Rpnew
jtω )2

⇒ Rpnew
jtω (1 + Rpnew

jtω ) ≤ Rq
jtω + (Rpnew

jtω )2

⇒ Rpnew
jtω + (Rpnew

jtω )2 ≤ Rq
jtω + (Rpnew

jtω )2

⇒ Rpnew
jtω ≤ Rq

jtω

With this relationship, we will have the following:

LBq = ν[LIPM](P q
1 ,P q

2 ) = Ξ + ∑
t∈T

∑
j∈J

∑
ω∈Ω

co
jtR

q
jtω ≥ Ξ + ∑

t∈T
∑
j∈J

co
jtR

pnew
jtω

= Ξ + ∑
t∈T

∑
j∈J

∑
ω∈Ω

co
jt

( ∑m∈M∑b∈B ∑s∈S ∑n∈Njk ∑k∈K Xmbsnjktω

cjt −∑m∈M∑b∈B ∑s∈S ∑n∈Njk ∑k∈K Xmbsnjktω

)

≥ max

{
UBq, Ξ + ∑

t∈T
∑
j∈J

∑
ω∈Ω

co
jt

( ∑m∈M∑b∈B ∑s∈S ∑n∈Njk ∑k∈K Xmbsnjktω

cjt −∑m∈M∑b∈B ∑s∈S ∑n∈Njk ∑k∈K Xmbsnjktω

)}
≥ UBq
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where

Ξ = ∑
t∈T

(
∑
s∈S

∑
j∈J

(
∑

n∈Njk

∑
k∈Kj

ψstYsnjkt + ∑
m∈M

∑
b∈B

ηmbtYmbsjt

)
+ ∑

ω∈Ω
ρω

(
∑

(e, f )∈(I ⋃K,J ⋃ G)
cme f tXme f tω + ∑

(i,g)∈(I ,G)
cmigtXmigtω + ∑

b∈B
∑
s∈S

∑
n∈Njk

∑
(j,k)∈(J ,K)

cmbsjktXmbsnjktω +

∑
j∈J ⋃K hmjtHmjtω + ∑

g∈G
πmgtUmgtω + ∑

k∈K
co

ktWktω

))

This violates our initial assumption UBq > LBq. This implies for any given

iteration q, at least one different {Rp1
jtω} is generated, meaning that the number

of values taken by {Rp1
jtω} is finite. Likewise, we can prove that for any given

iteration q, at least one different {Wp2
ktω} is generated and the number of values

taken by {Wp2
ktω} is finite. This proves that the CG algorithm terminates in a finite

number of iterations.

3.4.2 Sample Average Approximation

Model ν[LIPM](P q
1 ,P q

2 ) considers the stochastic nature of supply availability

of the agricultural products (ϕmitω) and waterlevel condition (wjktω) that require

the evaluation of a large number of scenarios to ensure the robustness of the solu-

tion. Solving model ν[LIPM](P q
1 ,P q

2 ) using CG algorithm for such a large num-

ber of scenarios is still considered challenging. To overcome this computational

challenge and to solve model ν[LIPM](P q
1 ,P q

2 ) in a reasonable timeframe, we em-

ploy a sampling technique, commonly referred to as Sample Average Approximation

(SAA) algorithm. This technique has widely used by many researchers in different

application areas including logistic and supply chain design [119, 21, 120, 107, 108],
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routing [142], production-routing [1], while [66], [92], [91], [75] discussed the sta-

tistical significance and convergence properties of this algorithm.

In SAA, random samples are generated and the expected value function is ap-

proximated by the corresponding sample average function. This process is con-

tinued until a pre-specified tolerance gap is achieved. Specifically, SAA selects

a sample set {ω1, ω2, ..., ω|O|} of O scenarios from the set of all available scenar-

ios Ω following a probability distribution P. Then, the corresponding O scenario

set problems are solved repeatedly until a pre-specified tolerance gap is achieved.

The lower bound of the CG algorithm is now approximated by the following SAA

problem.

LBq = ν[LIPM](P q,O
1 ,P q,O

2 )

= ∑
t∈T

(
∑
s∈S

∑
j∈J

(
∑

n∈Njk

∑
k∈Kj

ψstYsnjkt + ∑
m∈M

∑
b∈B

ηmbtYmbsjt

)

+
1
|O|

O

∑
o=1

(
∑

(e, f )∈(I ⋃K,J ⋃ G) cme f tXme f to + ∑
(i,g)∈(I ,G)

cmigtXmigto

+ ∑
b∈B

∑
s∈S

∑
n∈Njk

∑
(j,k)∈(J ,K)

cmbsjktXmbsnjkto + ∑
j∈J ⋃K hmjtHmjto

+ ∑
g∈G

πmgtUmgto + ∑
j∈J

co
jtRjto + ∑

k∈K
co

ktWkto

))
(3.34)

With the increase in size of O, the optimal solution of [LIPM](P q,O
1 ,P q,O

2 ) and

the corresponding optimal objective value ν[LIPM](P q,O
1 ,P q,O

2 ) converges with

probability one to an optimal solution of the original problem [IPM] [66]. How-

ever, increasing the size of O significantly increases the computational time asso-

ciated with solving problem [LIPM](P q
1 ,P q

2 ). In a nutshell, there exists a trade-off
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between the achieved solution quality and the computational burden associated

with solving the corresponding subproblems. We now summarize the steps in-

volved in implementing the SAA technique for solving [LIPM](P q
1 ,P q

2 ) as follows:

1. Generate E independent supply and waterlevel scenarios of size |O| i.e.,
{ϕ1

e (ω), ϕ2
e (ω), ..., ϕ

|O|
e (ω)} and {w1

e (ω), w2
e (ω), ..., w|O|e (ω)}, ∀e = 1, ..., E

where ϕϕϕ = {ϕmitω, ∀m ∈ M, i ∈ I , t ∈ T , ω ∈ Ω}, www = {wjktω, ∀j ∈
J , k ∈ K, t ∈ T , ω ∈ Ω}. After generating O scenarios, solve the following
corresponding SAA problem:

[LIPM(SAA)] Minimize
Y∈Y

ĝ(Y) := ∑
t∈T

(
∑
s∈S

∑
j∈J

(
∑

n∈Njk

∑
k∈Kj

ψstYsnjkt

+ ∑
m∈M

∑
b∈B

ηmbtYmbsjt

)
+

1
|O|

O

∑
o=1

Q(Y, ζo)

)
(3.35)

For e = 1, ..., E, let ve
O and Ŷe

O represent the optimal objective value and the
optimal solution of (3.35), respectively.

2. Next, we compute the average and variance of all the corresponding SAA
problems, referred to as v̄O

E and σ2
v̄O

E
, respectively.

v̄O
E =

1
E

E

∑
e=1

ve
O (3.36)

σ2
v̄O

E
=

1
(E− 1)E

E

∑
e=1

(
ve

O − v̄O
E

)2
(3.37)

Note that v̄O
E provides a valid statistical lower bound on the optimal objective

function value (v∗) for the original problem (3.32) i.e., v̄O
E ≥ v∗ [92].

3. Select a feasible first-stage solution Ỹ ∈ Y, obtained from Step 1 of the SAA
algorithm, and use the solution to estimate the objective function value of
the original problem (3.32) using a reference sample O′ as follows:

ĝ(Ỹ) := ∑
t∈T

{
∑
s∈S

∑
j∈J

(
∑

n∈Njk

∑
k∈Kj

ψstỸsnjkt + ∑
m∈M

∑
b∈B

ηmbtỸmbsjt

)
(3.38)

+
1
|O′|

O′

∑
o=1

Q(Y, ζo)

}
(3.39)
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This estimator g̃O′(Ỹ) provides an upper bound for the optimal objective
function value of the original problem (3.37). This value is updated in each
iteration if the obtained value is less than that of the previous iteration. Let
O′ be a large set of randomly generated independent supply and waterlevel
scenarios such that O′ � O. The variance of g̃O′(Ỹ) can be estimated as
follows:

σ2
O′(Ỹ) =

1
(|O′| − 1)|O′|

O′

∑
o=1

{
∑
t∈T

(
∑
s∈S

∑
j∈J

(
∑

n∈Njk

∑
k∈Kj

ψstỸsnjkt + ∑
m∈M

∑
b∈B

ηmbtỸmbsjt

)
+ Q(Y, ζo)

)
− g̃O′(Ỹ)

}2

4. Utilizing the estimators obtained in Steps 2 and 3 we calculate the optimality
gap (gapO,E,O′(Ỹ)) and its variance (σ2

gap) as follows:

gapO,E,O′(Ỹ) = v̄O
E − g̃O′(Ỹ)

σ2
gap = σ2

O′(Ỹ) + σ2
v̄O

E

The confidence interval for the optimality gap can be computed as follows:

v̄O
E − g̃O′(Ỹ) + zα

{
σ2

O′(Ỹ) + σ2
v̄O

E

}1/2

with zα:= Φ−1(1 − α), where Φ(z) represents the cumulative distribution
function of the standard normal distribution.

3.4.3 L-shaped Algorithm

Step 1 of the SAA algorithm still requires solving a two-stage stochastic mixed-

integer linear program [LIPM(SAA)], which may still considered challenging based

on the size of the problem. This motivates us to develop a modified variant of

the L-shaped algorithm to solve [LIPM(SAA)] efficiently. L-shaped algorithm, pro-

posed by Laporte and Louveaux [69], is widely used in the literature to solve

a variety of network design problems such as [82, 115, 52]. In this sub-section,

we first introduce the basic L-shaped algorithm followed by different accelerated
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techniques, such as problem-specific valid inequalities, multi-cut, knapsack cuts,

scenario grouping and mean-value cuts, to solve [LIPM(SAA)] efficiently.

L-shaped algorithm separates the original problem [LIPM(SAA)] into two sim-

ple problems: an integer master problem and a linear subproblem. Let Θ(Y) be the

expected value of the second-stage problem of [LIPM(SAA)]. An equivalent for-

mulation for [LIPM(SAA)] is given by [D-LIPM] as follows.

[D-LIPM]Minimize
Y∈Y

∑
t∈T

∑
s∈S

{
∑

n∈Njk

∑
j∈J

∑
k∈Kj

ψstYsnjkt + ∑
m∈M

∑
b∈B

∑
j∈J

ηmbtYmbsjt

}

+Θ(Y)

(3.40)

subject to (3.2)-(3.11), (3.13)-(3.22), and (3.26)-(3.29). In each iteration of the L-

Shaped algorithm, a relaxed version of problem [D-LIPM] is solved. Essentially,

instead of minimizing Θ(Y), in this relaxed problem, the outer approximation of

Θ(Y) is minimized. Birge and Louveaux [16] showed that with finite number of

scenarios |O|, Θ(Y) resembles a piecewise linear convex function. Therefore, the

linear functions generated by the algorithm lie either on or below Θ(Y). With

growing iterations, an improved approximation is obtained, and the process con-

tinues until an optimal solution is found. Laporte and Louveaux [69] showed that

upon meeting two conditions, L-shaped method can guarantee to provide an opti-

mal solution within a finite number of steps: (i) generation of valid optimality and

feasibility cuts and (ii) Θ(Y) is computable with the given solutions of first-stage
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variables. To approximate Θ(Y), we formulate model [M-LIPM] as an approxi-

mation of model [D-LIPM] as follows:

[M-LIPM] φr = Minimize ∑
t∈T

∑
s∈S

{
∑

n∈Njk

∑
j∈J

∑
k∈Kj

ψstYsnjkt

+ ∑
m∈M

∑
b∈B

∑
j∈J

ηmbtYmbsjt

}
+ θ

(3.41)

subject to (3.2)-(3.11), and

θ ≥ θr + ∑
m∈M

∑
b∈B

∑
s∈S

∑
j∈J

∑
t∈T

ξr
mbsjt(Ymbsjt −Yr

mbsjt) ∀r = 1, 2, 3, ..., R(3.42)

Problem [M-LIPM] is referred to as master problem of the L-shaped algorithm

where (3.42) are known to be optimality cut constraints. Let r ∈ R be any iteration

number of the L-shaped algorithm. In [M-LIPM], an auxiliary free variable θ is

introduced and the definitions for θr and ξr
mbsjt are provided below. For a given

first-stage decisions Yr, obtained by solving [M-LIPM] in iteration r, the following

scenario-based subproblems [S-LIPM(o)] are solved.

[S-LIPM(o)] θr
o(Y, ζo) = Minimize

X,H,U
∑
t∈T

(
∑

(e, f )∈(I ⋃K,J ⋃ G) cme f tXme f to + ∑
(i,g)∈(I ,G)

cmigtXmigto + ∑
b∈B

∑
s∈S

∑
n∈Njk

∑
(j,k)∈(J ,K)

cmbsjktXmbsnjkto + ∑
j∈J ⋃K

hmjtHmjto + ∑
g∈G

πmgtUmgto + ∑
j∈J

co
jtRjto + ∑

k∈K
co

ktWkto

)
(3.43)
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subject to (3.13)-(3.17), (3.20)-(3.22), (3.26)-(3.29), and

∑
n∈Njk

Xmbsnjkto≤min{wjkto, wb}Ymbsjt ∀m ∈ M, b ∈ B, s ∈ S ,

j ∈ J , k ∈ Kj, t ∈ T (3.44)

∑
n∈Njk

∑
k∈Kj

(Xmbsnjkto

ρm

)
≤vbYmbsjt∀m ∈ M, b ∈ B, s ∈ S , , j ∈ J , t ∈ T (3.45)

Ymbsjt=Yr
mbsjt : ξmbsjto∀m ∈ M, b ∈ B, s ∈ S , j ∈ J , t ∈ T(3.46)

Let ξξξ = {ξr
mbsjto|∀m ∈ M, b ∈ B, s ∈ S , j ∈ J , t ∈ T , o ∈ O} be the dual

variables associated with constraints (3.46) for scenario o at iteration r of the L-

shaped algorithm. In each iteration r of the L-shaped algorithm, the solutions of

[S-LIPM(o)] are used (θr
o) to determine the value of θr as used in the optimality

cut constraints in (3.42). We now use the following equations to derive the slope

coefficient ξr
mbsjt and intercept θr for constraint (3.42).

ξr
mbsjt = ∑

o∈O

ρoξr
mbsjto (3.47)

θr = ∑
o∈O

ρoθr
o (3.48)

Note that for any given value of Y, constraints (3.16) ensure that the problem

(3.43) is always feasible. Therefore, we did not add any feasibility cut in the mas-

ter problem [M-LIPM]. Problem [M-LIPM] minimizes the outer approximation of

the convex function Θ(Y) in [D-LIPM]; therefore, the objective function value of

[M-LIPM] provides a valid lower bound for problem [D-LIPM]. The solution of

master and scenario based subproblems provide an upper bound for the original

SAA subproblem [LIPM(SAA)]. The L-shaped algorithm terminates when the gap
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between the upper and lower bound reaches to a predetermined threshold limit.

If not, an optimality cut (in the form of (3.42)) is added to [M-LIPM] and the al-

gorithm continues. Let us define Zr
mas such that Zr

mas = ∑s∈S ∑j∈J ∑t∈T

(
∑n∈Njk

∑k∈Kj
ψstYsnjkt + ∑m∈M∑b∈B ηmbtYmbsjt

)
. The pseudo-code of the basic L-shaped

algorithm is now given in Algorithm 2.

We first attempt to solve [LIPM(SAA)] with basic L-shaped algorithm, but we

observe that the algorithm finds it difficulty even in solving small-size test in-

stances (considering the size of our real-life dataset) in a reasonable time. This

motivates us to investigate additional techniques to further improve the conver-

gence of the basic L-shaped algorithm. The aim would be to find optimum (or

near-optimum) solution in solving [LIPM(SAA)] on realistic-test instances in a

much shorter time. The following subsections present some proper accelerated

techniques to improve the computational performance of the basic L-shaped algo-

rithm.

3.4.3.1 Valid inequalities

To enhance the performance of the L-shaped algorithm, we first generate a

number of valid inequalities that can be added to master problem [M-LIPM].

These inequalities are derived by utilizing the special structure of our problem

[IPM]. The proposed set of valid inequalities are presented below:

• We first add surrogate constraints, in the form of constraints (3.49) as shown
below, to problem [M-LIPM]. The value of σ can vary between 0.0 and 1.0
while a value of σ equal to 1.0 ensures that all the demand will be satis-
fied through the inland waterway ports. Essentially, constraints (3.49) can be
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Algorithm 2: L-shaped Algorithm

Initialize, r ← 1, εL, UBr ← +∞, LBr ← −∞

terminate← f alse

while terminate = false do
Solve [M-LIPM] to obtain Yr, ν[M-LIPM], and Zr

mas

if LBr < ν[M-LIPM] then
Update the lower bound: LBr ← ν[M-LIPM]

end

Solve [S-LIPM(o)] ∀o ∈ O to obtain {ξr
mbsjto} and θr

o

Calculate {ξr
mbsjt} and θr using equations (3.47) and (3.48)

if UBr > θr + Zr
mas then

Update the upper bound: UBr ← θr + Zr
mas

end

if (UBr−LBr)
UBr ≤ εL then

terminate← true

else
add optimality cut (3.42) to [M-LIPM]

end

r ← r + 1

end

used to set a lower bound on the overall barge usage to ensure the demand
for commodity m ∈ M at each time period t ∈ T is satisfied.

∑
b∈B

∑
s∈S

∑
j∈J

Ymbsjtwb ≥ ∑
g∈G

σdmgt ∀m ∈ M, t ∈ T (3.49)

• While selecting between a number of barges of similar capacities, solver may
encounter with symmetries that may result in elongated search times. To
address this issuue, the following lexicographic ordering constraints [122, 63]
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((3.50) and (3.51)) are generated which set priorities on barge selection. Such
priorities help to break the duplications caused by the barge selection sym-
metry, therefore, accelerate the performance of the branch-and-bound pro-
cess.

Y1,b−1,sjt ≥ Y1bsjt ∀b ∈ B \ {1}, s ∈ S , j ∈ J , t ∈ T(3.50)
m

∑
p=1

2(m−p)Yp,b−1,sjt ≥
m

∑
p=1

2(m−p)Ypbsjt

∀m ∈ M, b ∈ B \ {1}, s ∈ S , j ∈ J , t ∈ T (3.51)

• Symmetries may also arise between towboats of similar capacities. Consider
S ′e as the subset of towboats of same type, i.e., S ′e ⊂ S and s

′
e ∈ S

′
e, where s

′
e

represents a set of the members belonging to S ′e in ascending order. Similar to
constraints (3.50) and (3.51), following lexicographical ordering constraints
((3.52) and (3.53)) are applied for each S ′e to set the priority in utilizing tow-
boats of the same type.

Ys′e−1,njkt ≥ Ys′enjkt∀s
′
e ∈ S

′
e \ {1}, n ∈ Njk, j ∈ J , k ∈ K, t ∈ T (3.52)

ψs′e−1,tYs′e−1,njkt ≥ ψs′etYs′enjkt∀s
′
e ∈ S

′
e \ {1}, n ∈ Njk, j ∈ J , k ∈ K, t ∈ T(3.53)

• Constraints (3.54) and (3.55) generate a lower bound on the number of barges
that are required for satisfying the demand between any time interval [t1, t2]
where t2 ≥ t1. If the cumulative demand over period [t1, t2] is greater than
or equal to the maximum possible inventory held (hk) or initial inventory
(Hmk0o), then at least a certain number of barges need to be used in that spe-
cific time interval.

∑
b∈B

∑
s∈S

∑
j∈J

t2

∑
t=t1

Ymbsjt ≥


∑g∈G

t2
∑

t=t1

σdmgt −∑k∈K hk

wb


∀m ∈ M, (t1, t2) ∈ T , t2 ≥ t1 (3.54)

∑
b∈B

∑
s∈S

∑
j∈J

t2

∑
t=t1

Ymbsjt ≥


∑g∈G

t2
∑

t=t1

σdmgt −∑k∈K ∑o∈O ρoHmk0o

wb


∀m ∈ M, (t1, t2) ∈ T , t2 ≥ t1 (3.55)
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• Similar to constraints (3.54) and (3.55), constraints (3.56) and (3.57) set lower
bounds on towboat selection between any time interval [t1, t2] where t2 ≥ t1.
In both constraints, δs denote the capacity of the most powerful towboat S.

∑
s∈S

∑
n∈N

∑
j∈J

∑
k∈K

t2

∑
t=t1

Ysnjkt ≥


∑m∈M∑g∈G

t2
∑

t=t1

σdmgt −∑k∈K hk

wbδs


∀(t1, t2) ∈ T , t2 ≥ t1 (3.56)

∑
s∈S

∑
n∈N

∑
j∈J

∑
k∈K

t2

∑
t=t1

Ysnjkt ≥


∑m∈M

(
∑g∈G

t2
∑

t=t1

σdmgt −∑k∈K ∑o∈O ρoHmk0o

)
wbδs


∀(t1, t2) ∈ T , t2 ≥ t1 (3.57)

3.4.3.2 Multicut L-shaped Algorithm

In each iteration r of the basic L-shaped algorithm, only one optimality cut is

added to master problem [M-LIPM]. This may require several iterations before

sufficient information can be gathered and passed from the subproblems to the

master problem [M-LIPM] via constraints (3.42). To overcome this problem, Birge

and Louveaux [17] propose a multi-cut L-shaped algorithm where instead of adding

one optimality cut, as in the case with basic L-shaped algorithm, |O| number of

cuts, one for each scenario subproblem [S-LIPM(o)], are constructed and added to

[M-LIPM]. The optimality cut constraint (3.42) can now be modified as follows:

θo ≥ θr
o + ∑

m∈M
∑
b∈B

∑
s∈S

∑
j∈J

∑
t∈T

ξmbsjto(Ymbsjt −Yr
mbsjt) ∀r = 1, 2, 3, ..., R, o ∈ O(3.58)
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Note that variable θ and dual parameter ξr
mbsjt are now replaced by θo and ξmbsjto,

respectively. Accordingly, the objective function of the Benders master problem

[M-LIPM] is now modified as follows:

[MC-LIPM] φr = Minimize ∑
t∈T

∑
s∈S

(
∑

n∈Njk

∑
j∈J

∑
k∈Kj

ψstYsnjkt + ∑
m∈M

∑
b∈B

∑
j∈J

ηmbtYmbsjt

)

+ ∑
o∈O

poθo

(3.59)

Note that with the introduction of multi-cuts in [M-LIPM], the overall algo-

rithm may now require less number of iterations to reach the optimality gap com-

pared with the classical L-shaped algorithm; however, this reduction may be achieved

at a cost of increasing the running time in solving the Benders master problem, pri-

marily due to adding large number of new constraints.

3.4.3.3 Knapsack inequality

We now employ knapsack inequalities [119, 80] to enhance the performance of

the branch and bound process and to expedite the convergence of the overall L-

shaped algorithm. Addition of these cuts, along with optimality cut (3.42), es-

sentially help state-of-the-art commercial solvers (e.g., GUROBI, CPLEX) to de-

rive various valid inequalities that eventually help the convergence of the basic

L-shaped algorithm. Let UBr and LBr be the best known upper and lower bounds
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for the L-shaped algorithm at iteration r. The following knapsack inequalities can

be added to [M-LIPM] in iteration r + 1:

UBr ≥ ∑
t∈T

∑
s∈S

(
∑

n∈Njk

∑
j∈J

∑
k∈Kj

ψstYsnjkt + ∑
m∈M

∑
b∈B

∑
j∈J

ηmbtYmbsjt

)
+ θr (3.60)

LBr ≤ ∑
t∈T

∑
s∈S

(
∑

n∈Njk

∑
j∈J

∑
k∈Kj

ψstYsnjkt + ∑
m∈M

∑
b∈B

∑
j∈J

ηmbtYmbsjt

)
+ θ (3.61)

3.4.3.4 Scenario Bundling

The multi-cut L-shaped algorithm, discussed in subsection 3.4.3.2 [17], usually

improves the computational performance of the basic L-shaped algorithm. How-

ever, adding too many cuts at each iteration, more specifically, |O| number of cuts,

can degrade the overall performance of the L-shaped algorithm. This is primarily

due to the reason that the added disaggregated cuts can significantly increase the

solution time of the master problem [M-LIPM]. The performance further degrades

over iterations, since the master problem [M-LIPM] now need to carry significant

amount of cut information prior to the current iteration. To alleviate this challenge,

we adopt a scenario bundling strategy [1, 46] where instead of defining model [S-

LIPM(o)] for each scenario o ∈ O, we now define each subproblem with respect

to a scenario bundle [S-LIPM(γ)], denoted by set γ ∈ Γ, consisting of a number of

scenarios. Note that the bundling can be done by considering different criterion

specific to the model (e.g., high, medium, and low supply/waterlevel scenario

bundling). Let |O| be partitioned into |Γ| bundles and ργ = ∑o∈γ ρo. We now

solve model [S-LIPM(γ)] for each bundle γ ∈ Γ as follows:
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[S-LIPM(γ)] θr
γ(Y, ζγ) = Minimize

X,H,U
∑
t∈T

∑
o∈γ

ρo

(
∑

(e, f )∈(I ⋃K,J ⋃ G) cme f tXme f to +

∑
(i,g)∈(I ,G)

cmigtXmigto + ∑
b∈B

∑
s∈S

∑
n∈Njk

∑
(j,k)∈(J ,K)

cmbsjktXmbsnjkto +

+ ∑
j∈J ⋃K hmjtHmjto + ∑

g∈G
πmgtUmgto + ∑

j∈J
co

jtRjto + ∑
k∈K

co
ktWkto

)
(3.62)

subject to (3.13)-(3.17), (3.20)-(3.22), (3.26)-(3.29), and (3.44)-(3.46). Likewise, the

master problem and the optimality cut are updated as follows:

[SB-LIPM] φr = Minimize ∑
t∈T

∑
s∈S

{
∑

n∈Njk

∑
j∈J

∑
k∈Kj

ψstYsnjkt+

∑
m∈M

∑
b∈B

∑
j∈J

ηmbtYmbsjt

}
+ ∑

γ∈Γ
pγθγ

(3.63)

and

θγ ≥ θr
γ + ∑

m∈M
∑
b∈B

∑
s∈S

∑
j∈J

ξmbsjtγ(Ymbsjt −Yr
mbsjt) ∀r = 1, 2, 3, ..., R, γ ∈ Γ (3.64)

3.4.3.5 Mean Value Cuts

Type A: The earlier iterations of the L-shaped algorithm produces low qual-

ity first-stage decisions Y, primarily due to lack of useful information passed from

the subproblems to master problem via optimality cut constraint (3.42), which pro-

longs the running time of the overall algorithm. To alleviate this problem, Batun

et al. [14] propose a mean value cut that can be added in the master problem [M-

LIPM] in order to help obtaining a good lower bound from the earlier iterations

of the algorithm. The aim is to speed up the convergence of the overall L-shaped

algorithm. Essentially, a mean value cut, more specifically, referred to as Type A
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mean value cut, is generated using the subproblems defined under a mean-value sce-

nario ō (a scenario comprised of the mean values of the uncertain parameters). The

newly generated cut helps to strengthen the lower bound of the free variable θ in

an attempt to generate high quality feasible solutions during earlier iterations of

the L-shaped algorithm. To generate this inequality, the following additional pa-

rameters and decision variables are introduced:

Auxiliary parameters:

• ϕ̄mit: mean amount of product of m ∈ M available in supply site i ∈ I at
time period t ∈ T

• w̄jkt: mean allowable weight wjkt that can be carried between the channel
(j, k) ∈ (J ,K) at time period t ∈ T

Auxiliary decision variables:

• X̄migt: mean amount of commodities of type m ∈ M transported along arc
(i, g) ∈ (I ⋃ G) at time period t ∈ T

• X̄me f t: mean amount of commodities of type m ∈ M transported along arc
(e, f ) ∈ (I ⋃K,J ⋃ G) at time period t ∈ T

• X̄mbsnjkt: mean amount of commodities of type m ∈ M transported using
barge b ∈ B of towboat s ∈ S of trip n ∈ Njk along arc (j, k) ∈ (J ,K) at time
period t ∈ T

• H̄mjt: mean amount of commodities of type m ∈ M stored in port j ∈ J ⋃K
at time period t ∈ T

• Ūmgt: mean amount of commodities of type m ∈ M shortage in market
g ∈ G at time period t ∈ T
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The following additional constraints are added to the master problem [MC-

LIPM]:

∑
j∈Ji

X̄mijt + ∑
g∈Gi

X̄migt ≤ ϕ̄mit∀m ∈ M, i ∈ I , t ∈ T (3.65)

∑
i∈Ij

X̄mijt + (1− αm)H̄mj,t−1 = ∑
b∈B

∑
s∈S

∑
n∈Njk

∑
k∈Kj

X̄mbsnjkt + H̄mjt

∀m ∈ M, j ∈ J , t ∈ T (3.66)

∑
b∈B

∑
s∈S

∑
n∈Njk

∑
j∈Jk

X̄mbsnjkt = ∑
g∈Gk

X̄mkgt + H̄mkt − (1− αm)H̄mk,t−1

∀m ∈ M, k ∈ K, t ∈ T (3.67)

∑
i∈Ig

X̄migt + ∑
k∈Kg

X̄mkgt + Ūmgt = dmgt∀m ∈ M, g ∈ G, t ∈ T (3.68)

∑
m∈M

H̄mjt ≤ hj∀j ∈ J
⋃
K, t ∈ T (3.69)

∑
n∈Njk

X̄mbsnjkt ≤ min{w̄jkt, wb}Ymbsjt ∀m ∈ M, b ∈ B, s ∈ S ,

j ∈ J , k ∈ Kj, t ∈ T (3.70)

∑
n∈Njk

∑
k∈Kj

( X̄mbsnjkt

ρm

)
≤ vbYmbsjt∀m ∈ M, b ∈ B, s ∈ S ,

j ∈ J , t ∈ T (3.71)

∑
m∈M

∑
b∈B

∑
s∈S

∑
n∈Njk

∑
k∈Kj

X̄mbsnjkt ≤ cjt∀j ∈ J , t ∈ T (3.72)

∑
m∈M

∑
g∈Gk

X̄mkgt ≤ ckt∀k ∈ K, t ∈ T (3.73)

∑
m∈M

∑
b∈B

∑
s∈S

∑
n∈Njk

∑
k∈K

X̄mbsnjkt ≤
(

R̄jt

(1 + R̄p1
jt )

2

)
cjt +

( R̄p1
jt

1 + R̄p1
jt

)2

cjt (3.74)

∀j ∈ J , t ∈ T , p1 ∈ P1

∑
m∈M

∑
g∈G

X̄mkgt ≤
(

W̄kt

(1 + W̄p2
kt )

2

)
ckt +

(
W̄p2

kt

1 + W̄p2
kt

)2

ckt

∀k ∈ Kj, t ∈ T , p2 ∈ P2 (3.75)
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W̄kt ∈ R+∀k ∈ K, t ∈ T (3.76)

R̄jt ∈ R+∀j ∈ J , t ∈ T (3.77)

X̄migt, X̄mjkbsnt, X̄mkgt, H̄mjt, H̄mkt, Ūmgt ∈ R+ (3.78)

Additionally, the following lower bound strengthening cut is added to [MC-

LIPM]:

θr ≥ ∑
t∈T

(
∑

(e, f )∈(I ⋃K,J ⋃ G) cme f tX̄me f t + ∑
(i,g)∈(I ,G)

cmigtX̄migt +

∑
b∈B

∑
s∈S

∑
n∈Njk

∑
(j,k)∈(J ,K)

cmbsjktX̄mbsnjkt + ∑
j∈J ⋃K hmjtH̄mjt + ∑

g∈G
πmgtŪmgt +

∑
j∈J

co
jtR̄jt + ∑

k∈K
co

ktW̄kt

)
(3.79)

Type B: We now generate another type of mean value cut, referred to as Type B

mean value cut, where scenario bundling/grouping technique (discussed in Section

3.4.3.4) is utilized under the mean value framework.These cuts are derived from

mean scenario group γ̄ where γ̄ denote the mean scenario from all scenario o under

any specific scenario group/bundle γ. The newly generated cuts are then added

to the master problem [SB-LIPM] in an attempt to improve the convergence of

the basic L-shaped algorithm. In order to develop multiple mean-value cuts, the

following additional parameters and decision variables are introduced:

Auxiliary parameters:

• ϕmitγ̄: mean amount of product of m ∈ M available in supply site i ∈ I at
time period t ∈ T under scenario group γ

• wjktγ̄: mean allowable weight wjkt that can be carried between the channel
(j, k) ∈ (J ,K) at time period t ∈ T under scenario group γ
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Auxiliary decision variables:

• Xmigtγ̄: average amount of commodities of type m ∈ M transported along
arc (i, g) ∈ (I ⋃ G) at time period t ∈ T under scenario group γ

• X̄me f tγ̄: average amount of commodities of type m ∈ M transported along
arc (e, f ) ∈ (I ⋃K,J ⋃ G) at time period t ∈ T under scenario group γ

• X̄mbsnjktγ̄: average amount of commodities of type m ∈ M transported using
barge b ∈ B of towboat s ∈ S of trip n ∈ Njk along arc (j, k) ∈ (J ,K) at time
period t ∈ T under scenario group γ

• H̄mjtγ̄: average amount of commodities of type m ∈ M stored in port j ∈
J ⋃K at time period t ∈ T under scenario group γ

• Ūmgtγ̄: average amount of commodities of type m ∈ M shortage in market
g ∈ G at time period t ∈ T under scenario group γ
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Utilizing these new variables and parameters, the following set of constraints

are formulated and accordingly added to the master problem [M-LIPM].

∑
j∈Ji

Xmijtγ̄ + ∑
g∈Gi

Xmigtγ̄ ≤ ϕmitγ̄∀m ∈ M, i ∈ I , t ∈ T (3.80)

∑
i∈Ij

Xmijtγ̄ + (1− αm)Hmj,t−1,o = ∑
b∈B

∑
s∈S

∑
n∈Njk

∑
k∈Kj

Xmbsnjktγ̄ + Hmjtγ̄

∀m ∈ M, j ∈ J , t ∈ T (3.81)

∑
b∈B

∑
s∈S

∑
n∈Njk

∑
j∈Jk

Xmbsnjktγ̄ = ∑
g∈Gk

Xmkgtγ̄ + Hmktγ̄ − (1− αm)Hmk,t−1,γ̄

∀m ∈ M, k ∈ K, t ∈ T (3.82)

∑
i∈Ig

Xmigtγ̄ + ∑
k∈Kg

Xmkgtγ̄ + Umgtγ̄ = dmgt∀m ∈ M, g ∈ G, t ∈ T (3.83)

∑
m∈M

Hmjtγ̄ ≤ hj∀j ∈ J
⋃
K, t ∈ T (3.84)

∑
n∈Njk

Xmbsnjktγ̄ ≤ min{wjktγ̄, wb}Ymbsjt∀m ∈ M, b ∈ B, s ∈ S ,

j ∈ J , k ∈ Kj, t ∈ T (3.85)

∑
n∈Njk

∑
k∈Kj

(Xmbsnjktγ̄

ρm

)
≤ vbYmbsjt∀m ∈ M, b ∈ B, s ∈ S ,

j ∈ J , t ∈ T (3.86)

∑
m∈M

∑
b∈B

∑
s∈S

∑
n∈Njk

∑
k∈Kj

Xmbsnjktγ̄ ≤ cjt∀j ∈ J , t ∈ T (3.87)

∑
m∈M

∑
g∈Gk

Xmkgtγ̄ ≤ ckt∀k ∈ K, t ∈ T (3.88)

∑
m∈M

∑
b∈B

∑
s∈S

∑
n∈Njk

∑
k∈K

Xmbsnjktγ̄ ≤
(

Rjtγ̄

(1 + Rp1
jtγ̄)

2

)
cjt +

( Rp1
jtγ̄

1 + Rp1
jtγ̄

)2

cjt (3.89)

∀j ∈ J , t ∈ T , p1 ∈ P1

∑
m∈M

∑
g∈G

Xmkgtγ̄ ≤
(

Wktγ̄

(1 + Wp2
ktγ̄)

2

)
ckt +

( Wp2
ktγ̄

1 + Wp2
ktγ̄

)2

ckt

∀k ∈ Kj, t ∈ T , p2 ∈ P2 (3.90)
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Wktγ̄ ∈ R+∀k ∈ K, t ∈ T (3.91)

Rjtγ̄ ∈ R+∀j ∈ J , t ∈ T (3.92)

Xmigtγ̄, Xmjkbsntγ̄, Xmkgtγ̄, Hmjtγ̄, Hmktγ̄, Umgtγ̄ ∈ R+ (3.93)

Type B mean value cut is then given by the following:

θγ ≥ ∑
t∈T

(
∑

(e, f )∈(I ⋃K,J ⋃ G) cme f tXme f tγ̄ + ∑
(i,g)∈(I ,G)

cmigtXmigtγ̄ +

∑
b∈B

∑
s∈S

∑
n∈Njk

∑
(j,k)∈(J ,K)

cmbsjktXmbsnjktγ̄ + ∑
j∈J ⋃K hmjtHmjtγ̄ + ∑

g∈G
πmgtUmgtγ̄

+ ∑
j∈J

co
jtRjtγ̄ + ∑

k∈K
co

ktWktγ̄

)
(3.94)

3.4.3.6 Local Branching

The earlier iterations of the L-shaped algorithm still experience slow conver-

gence i.e., the gap between the upper and lower bound drops slowly even after

the addition of all proposed cuts. To address this issue, the local branching proce-

dure is adopted. This procedure was first developed by Fischetti and Lodi [41].

Later, Rei et al. (2009) [116] first demonstrated the utilization of this procedure un-

der the classical Benders decomposition framework. Following this procedure, the

feasible region is divided into a series of smaller subproblems which can be solved

by any generic solver (e.g., GUROBI, CPLEX) within an acceptable time limit. The

procedure begins with a feasible solution Y of [M-LIMP] that serves as a reference

point to create local branching subproblems. Let kv be a positive integer parameter.

130



www.manaraa.com

Considering Ȳ1 be an optimal solution of the master problem [M-LIMP], the fea-

sible region of [M-LIMP] is divided into the following two reduced subproblems.

∆(Y, Ȳ1
) ≤ kv ∨ ∆(Y, Ȳ1

) ≥ kv + 1 (3.95)

The reduced subproblem is then solved by adding the left branching constraint pre-

sented in the first part of constraint (3.95). After solving the local branching sub-

problem, depending on the status of the optimizer, one of the four cases, (i) op-

timality, (ii) infeasibility , (iii) suboptimality, and (iv) exceeding timelimit, might

arise. If the first case (i) arises, the left branching constraint is replaced by the right

branching constraint i.e., ∆(Y, Ȳ1
) ≥ kv + 1, and the reference point is updated

with the new solution. In case (ii), the left branching constraint is replaced by the

right branching constraint i.e., ∆(Y, Ȳ1
) ≥ kv + 1 and a diversification procedure is

applied by increasing the size of the feasible region by dkv/2e i.e., (kv + dkv/2e).

Upon occurance of case (iii), we eliminate the left branching constraint, and add

a tabu constraint ∆(Y, Ȳ2
) ≥ 1 where, Ȳ2 is the new reference point from the last

subproblem. Then, a new subproblem is generated and solved by adding the left

branching constraint ∆(Y, Ȳ2
) ≤ kv. In case (iv), we decrease the right hand size of

the left branching constraint by one, and add tabu cut to eliminate Ȳ2 from further

consideration. The current subproblem is then solved for finding a better solution.

If not found, the diversification procedure is repeated to enlarge the size of the

feasible region.
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3.4.4 Implementing Parallel Processing:

The proposed algorithmic framework utilizes constraint generation (CG), sam-

ple average approximation (SAA), and the L-shaped algorithm in a nested struc-

ture along with a number of enhancement techniques introduced in section 3.4.3.

To enhance the performance of this nested hybrid decomposition algorithm and to

accelerate the solution process, we develop two different parallelization schemes

based on parallel computing concept. In contrast with the conventional techniques

where the subproblems of the algorithms under investigation could be solved

in series, we develop a parallelization framework, utilizing the multiprocessing

capabilities of the computers, to solve our proposed hybrid decomposition algo-

rithm in parallel. Essentially, two parallelization schemes are developed which are

discussed in details below.

(i) Scheme 1: The first scheme applies synchronous parallelization technique
under SAA algorithm. In each iteration, SAA generates |E| replications of
problem [LIPM(SAA)]. Following this scheme, each of these replications
are routed to different available processors and solved in parallel utilizing
the enhanced L shaped algorithm. Note that the L-shaped algorithm solves
the master problem [M-LIPM] and scenario-based subproblems [S-LIPM(o)]
that are the relaxed version of the equivalent formulation of [LIPM(SAA)].
After all the replications are solved, the solutions are aggregated and the con-
vergence of the SAA algorithm is checked. If the obtained gap is lower than
the predefined threshold limit, then the SAA algorithm is terminated; other-
wise, more SAA replications are generated and the process continues. Given
that the SAA algorithm is converged in any iteration, we first calculate the
upper bound of the CG algorithm and then check the convergence of the CG
algorithm. If the CG algorithm provides solution of the desired quality, we
stop the algorithm. Otherwise, we generate new points {Rnew

jtω } and {Wnew
ktω }

and continue the process. The flow chart for this parallelization scheme can
be seen in Figure 3.2.

(ii) Scheme 2: The second parallelization scheme applies synchronous paral-
lelization technique under the L-shaped algorithm introduced in section 3.4.3.
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In each iteration r of the L-shaped algorithm, a master problem [M-LIPM]
and a series of scenario-based subproblems [S-LIPM(o)] are solved. Follow-
ing this scheme, each of these scenario-based subproblems are dynamically
distributed to different available processors which are finally collected and
aggregated upon solution. These aggregated solutions are then utilized to
generate optimality cut (3.42) and apply different enhancement techniques
discussed in section 3.4.3. Upon satisfaction of convergence requirements of
the L-shaped algorithm, the next replication of the SAA algorithm (i.e., prob-
lem [LIPM(SAA)]) is solved following the same procedure. The process is
continued until all replications of any particular iteration of the SAA algo-
rithm are solved with desired quality. If such a quality is found, the current
solution is used to calculate the upper bound of the outer loop (i.e., CG algo-
rithm) of the proposed algorithm. We then check the convergence of the CG
algorithm and generate new points ({Rnew

jtω } and {Wnew
ktω }) if the convergence

is not at desired level. The loop repeats until the CG algorithm provides a
solution of the desired quality. The flow chart for this parallelization scheme
can be seen in Figure 3.3.

3.5 Experimental Results

This section presents a real-life case study on model [IPM] that illustrates the

performance of the proposed hybrid nested decomposition algorithm and to draw

important managerial insights. The model and solution algorithms are coded in

python 2.7 on a desktop computer with Intel Core i7 3.6 GHz processor and 32.0

GB RAM. Optimization solver Gurobi Optimizer 6.52 is used to solve the proposed

mathematical model. Four states from the Southeast region of the United States,

namely, Arkansas (AR), Louisiana (LA), Mississippi (MS), and Tennessee (TN) are

selected as a testing ground to visualize and validate the modeling results. All

2Available from: http://www.gurobi.com/
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Figure 3.2

Parallelization scheme 1
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Figure 3.3

Parallelization scheme 2
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costs are calculated based on 2018 dollars value. In following subsections, we

briefly describe the input parameters used in this study, present the performance

of the proposed solution algorithms, and summarize the managerial insights ob-

tained from the experimental study.

3.5.1 Data Description

Inland Waterway Port Location: In this study we consider a total of thirteen

inland waterway ports along the Mississippi River. The geographical locations

of these selected ports are shown in Figure 3.4. Among these thirteen ports, five

ports, namely, the Port of Rosedale, Greenville, Vicksburg, Natchez, and the Ya-

zoo County, are located in Mississippi. The first four of them are located alongside

the Mississippi River, whereas the Port of Yazoo County stands along a stream

flowing from the Mississippi River. The Port of Claiborne County is operationally

unavialble [85]; therefore, we have excluded this port from further consideration.

Besides, we consider few ports from Louisiana (e.g., the Port of Geismar Louisiana,

Greater Baton Rouge, South Louisiana, and Gramercy) and Tennessee (e.g., the

Port of Memphis, Pemiscot County, and New Madrid County), and the Port of

Little Rock from Arkansas to construct the case study. All of these ports are di-

rectly connected with each other via the Mississippi River.

136



www.manaraa.com

Figure 3.4

Inland waterway port locations along the Mississippi River
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Supply Data: This case study considers four commodities to be transported

from their supply sites to demand locations via the transportation network under

consideration. These selected commodities are rice, corn, woodchips, and fertil-

izer. The annual supply distribution (in 1,000 tons) of these four commodities

in the test region can be seen in Figure 3.5. Suppliers located within a radius of

60 miles from the selected ports are only considered for the study. Among the

selected commodities the first two, rice and corn, are highly seasonal in nature.

These commodities are not available throughout the year. More specifically, rice

is available only between August and October of each year whereas the harvest-

ing period of corn starts from mid-July and ends by early December of each year

[133]. The avaibality of woodchips remain fairly stable throughout the year except

three months during the winter (December to February) [133]. Fertilizer is avail-

able throughout the year. The test region produces 6.3 and 113.8 million tons of

rice and corn per year from 42 and 59 different counties, respectively [135]. On the

other hand, 8.3 and 0.4 million tons of woodchips and fertilizer are supplied from

31 and 22 different counties, respectively [136, 137].

Demand Data: In this study a total of 43 industries in Mississippi are consid-

ered as demand points for the selected commodities. These facilities are located

near to any of the inland waterway ports under consideration. The annual de-

mand for these commodities are set as 3.8, 68.3, 8.3, and 0.37 million tons of rice,

corn, woodchips, and fertilizer, respectively [135, 137]. The location and distribu-
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(a) Rice (b) Corn

(c) Woodchips (d) Fertilizer

Figure 3.5

Supply availability for (a) rice, (b) corn, (c) fertilizer, and (d) woodchips in the

test region (in 1,000 tons)
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tion of demand points for all the four commodities in Mississippi are presented in

Figure 3.6.

Transportation Costs: This study considers two transportation modes: trucks and

barges for transporting commodities from their sources to destinations. Our study

assumes that trucks will be used to transport commodities between supply sites

i ∈ I to origin ports j ∈ J and destination ports k ∈ K to markets g ∈ G. Ad-

ditionally, trucks are also considered as useful alternatives to perform direct com-

modity transportation between supply sites i ∈ I and markets g ∈ G. A semi

truck with 25 tons of load capacity can be used to serve this purpose. The fixed

cost (e.g., loading and unloading cost) and variable cost (e.g., fuel cost) associated

with using any of such trucks can be $5/ton and $1.20/mile/truckload, respec-

tively [36]. On the other hand, origin ports j ∈ J and destination ports k ∈ K

are the two available set of points between which waterway transportation is pri-

marily conducted with the association of barges and towboats. The capacity of

towboats are considered as a maximum (δs) of 15 barges while utilizing towboats

incur a fixed loading and unloading cost (ψst) of $244.38 [138]. The barges are con-

sidered having a maximum design capacity (wb) of 1,500 tons each [138]. Barge

usage cost is set as $0.017/mile/ton, adopted from a study of Gonzales et al. [48].

Waterlevel Fluctuations: Waterlevel fluctuation is one of the most prominent prob-

lem typically experiences by the inland waterway transportation system. Differ-
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(a) Rice (b) Corn

(c) Woodchips (d) Fertilizer

Figure 3.6

Demand for (a) rice, (b) corn, (c) fertilizer, and (d) woodchips in the test region

(in 1,000 tons)
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ent waterbodies all over the world (e.g., Yangtze River at China [94], Rhine River

at Europe [94], Tagliamento River at Europe [131], and many others) experience

this unavoidable phenomenon in different time period of the year. The Missis-

sippi River also experiences significant waterlevel fluctuations in different time

period of a year which seriously impact the inland waterway port operations. For

instance, the lower Mississippi River possess better flow compared to the upper

Mississippi River; therefore, the load carrying capacity of this segment of the river

is more sound and reliable compared to the upper Mississippi River. On the other

hand, it is evident from the historical records that the waterlevel of this portion

of river experiences significant variations year round that impacts the barge traffic

flowing through this waterway. Often this fluctuation becomes extremely signif-

icant even in different weeks on the same month. A demonstration of waterlevel

fluctuations between Port of Rosedale and Port of Greenville from July, 2016 to

June, 2017 is provided in Figure 3.7 [139]. Each data point in Figure 3.7 shows

the water stage3 variation (e.g., minimum, maximum, and average waterlevel) per

week as reported by the US Army Corps of Engineers [139]. We can notice from

the figure that between the middle of August and end of December of a calender

year, the waterlevel drops become more prominent, showing the maximum dur-

ing the first three weeks of October (week 14-16 in Figure 3.7). Other than these

specific periods, the water stage generally remains above the desired level of 14.2

3Water stage is a popular measure of waterlevel in a river stream with respect to a reference
height
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feet for other time periods, except in May when the level reaches to 42 feet, which

is higher than the flood level (37 feet) [139].

Figure 3.7

Demonstration waterlevel fluctuations between Port of Rosedale and Port of

Greenville from July, 2016 to June, 2017 [139]

3.5.2 Real-life Case Study

This subsection illustrates how the proposed model and solution approaches can

be used to derive important managerial insights from solving a real-world prob-

lem. In order to show the impact of different key input parameters, a number of

experiments are conducted. This section provides a comprehensive summary of

the experimental results.
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The first set of experiments examine the impact of water level fluctuation (wjktω)

on overall system performance. Depending on the observations in Figure 3.7, we

generate four different waterlevel scenarios considering±20% and±40% changes

in base mean waterlevel (wjktω) fluctuations. Figure 3.8 summarizes the key results

of this experiment. Note that in Figure 3.8 and the following figures, t = 1 stands

for a representative week of month July, and the following 11 months are repre-

sented in ascending order ending at t = 12 which is a representative week of June.

Figure 3.8(a) shows that with 20% and 40% increase in mean wjktω, barge selec-

tion (Ymbsjt) drops by 8.48% and 24.14%, respectively, from the base case scenario.

On the other hand, a 20% and 40% reduction in mean wjktω cause barges to carry

less load from their design capacity which in turn rises Ymbsjt selection by 13.25%

and 25.33%, respectively, from the base case scenario. The peak barge usage is ob-

served in the month of October (t = 3) when the waterlevel drop is most severe.

Additionally, Figure 3.8(b) shows that the barge to towboat ratio (Ymbsjt/Ysnjkt) in-

creases with a mean reduction in wjktω. To be specific, with 40% drop in wjktω,

this ratio reaches to a maximum of 15 barges per towboat (see t = 2 to 5 in Figure

3.8(b)). As evident from Figure 3.7 that the waterlevel drop is not significant be-

tween January to July. Therefore, we do not observe any significant deviations in

transportation decisions for those time periods, as can be seen even for 20% and

40% increment on wjktω in Figures 3.8(a) and (b). To magnify the impact of con-

gestion under different wjktω scenarios, few additional experiments are conducted

by considering and ignoring the congestion terms in model [IPM]. As observed
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in Figures 3.8(c) and (d), the system could utilize an additional 21.89% and 10.5%

barges even in the worst (-40% change in wjktω) and best (+40% change in wjktω)

waterlevel scenarios, respectively, if the congestion terms are dropped from model

[IPM]. Further, it is realized that the barges are now required to adjust their weight

carrying capacities according to the waterlevel conditions as illustrated in Figure

3.8(d).

The next set of experiments study the impact of system performance under

different commodity supply φmitω scenarios. To run these experiments, we create

different instances by changing the mean supply (φmit) by ±25% and ±50% from

the base supply. Figure 3.9 illustrates the impact of φmit changes in barge (Ymbsjt)

and towboat (Ysnjkt) selection. With 25% and 50% increase in φmit, it is observed

that the Ymbsjt and Ysnjkt selections are increased by 11.21% and 4.42%, respec-

tively, from the base case scenario. Further, when φmit is changed by -25%/-50%,

Ymbsjt and Ysnjkt decisions are accordingly changed by -6.7%/-15.3% and -12.05%/-

15.1%, respectively, from the base case. This indicates that the selection of Ymbsjt

and Ysnjkt decisions are highly sensitive to supply availability.

The system performance is further inspected by considering and ignoring con-

gestion (e.g., co
jt = 0; ∀j ∈ J ⋃K, t ∈ T ) under φmit changes. Moreover, to ap-

propriately capture these cases, we create two timeframes, namely, peak and low

impact season, when the supply availabilities are respectively high and low. Due

to the harvesting seasons of many agricultural products (e.g., corn, rice), we select

September to November as the peak season and other months of the year as low
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(a) Number of barges used (Ymbsjt) (b) Barge to towboat ratio (Ymbsjt/Ysnjkt)

(c) Total barges used (d) Change in load per

barge

Figure 3.8

Impact of w̄jktω changes on overall system performance
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impact season. Figure 3.10 demonstrates the impact of φmit changes on overall sys-

tem performance with and without considering the congestion cost. Note that in

Figure 3.10, we denote Ymbsjt and Umgtω to be the average number of barges used

and unsatisfied demand over the peak and low impact seasons. It is observed

that compared to the base case 37.7% additional barges are now required to be

used during the peak season if the congestion effect could be ignored. The impact

is even more significant when φmit continue to be increased (see Figure 3.10(b)).

However, this number drops down to only 4.3% for the low impact season as can be

seen in Figure 3.10(a). Figure 3.10(c) further illustrates the impact of congestion

on Ymbsjt and Umgtω decisions. More specifically, we observe that Umgtω drops

with an increase in φmit quantity. However, this drop can be as much as approxi-

mately 49.4% if the congestion terms are ignored in model [IPM]. To summarize, it

can be observed that congestion significantly restricts the commodity transporta-

tion under all supply scenarios; therefore, additional capacity enhancements on

waterways and ports might provide long term benefits in minimizing its effect

and retain sound commodity transportation.

3.5.3 Performance Evaluation of the Algorithms

This section presents our computational experiences in solving model [LIPM] us-

ing the algorithms presented in Section 3.4. To test the performance of the solution

algorithms, we first vary |I|, |J |, |K|,|G|, and |Ω| to generate 9 different problem

instances. These instances are summarized in Table 3.1. We use the following cri-
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teria to terminate the algorithms: (i) the optimality gap (i.e., ε = |UB− LB|/UB)

falls below a threshold value (e.g., ε = 1.0%); (ii) the maximum time limit (tmax)

is reached (e.g., tmax = 10, 800 CPU seconds); or (iii) the maximum iteration

limit (qmax) is reached (e.g., qmax = 100). To help readers follow our solution ap-

proaches, the following notations are used to represent each particular variants of

the proposed algorithms.

• CG: Constraint Generation Algorithm.

• CG+SAA: Hybrid algorithm combining Constraint Generation Algorithm
and Sample Average Approximation discussed in Sections 3.4.1 and 3.4.2.

• CG+SAA+L: Hybrid decomposition algorithm combining Constraint Gener-
ation Algorithm, Sample Average Approximation, and L-shaped algorithm
discussed in Sections 3.4.1-3.4.3.

• CF-I: Hybrid decomposition algorithm combining Constraint Generation Al-
gorithm, Sample Average Approximation, and L-shaped algorithm with en-
hancements discussed in Sections 3.4.3.1–3.4.3.3, 3.4.3.6, and Type A Mean-
value cut.

• CF-II: Hybrid decomposition algorithm combining Constraint Generation
Algorithm, Sample Average Approximation, and L-shaped algorithm with
enhancements discussed in Sections 3.4.3.1– 3.4.3.4, 3.4.3.6, and Type B Mean-
value cut.

• PS-I: Parallelization scheme I discussed in Section 3.4.4.

• PS-II: Parallelization scheme II discussed in Section 3.4.4.

• CF-I + PS-I: Parallelization scheme I is applied over hybrid algorithm CF-I.

• CF-I + PS-II: Parallelization scheme II is applied over hybrid algorithm CF-I.

• CF-II + PS-I: Parallelization scheme I is applied over hybrid algorithm CF-II.

• CF-II + PS-II: Parallelization scheme II is applied over hybrid algorithm CF-
II.
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(a) Barge selection (Ymbsjt)

(b) Towboat selection (Ysnjkt)

Figure 3.9

Impact of supply (φmit) changes on (a) barge and (b) towboat selection
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(a) Ymbsjt in low im-

pact season

(b) Ymbsjt in peak sea-

son

(c) Changes in φmit on Ymbsjt and Umgtω

Figure 3.10

Impact of supply (φmit) changes on Ymbsjt and Umgtω decisions
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The first set of experiments study the impact of different variants of the pro-

posed algorithms discussed in Section 3.4 without parallelization i.e., approaches

CG, CG+SAA, CG+SAA+L, CF-I, and CF-II, respectively. Table 3.2 summarizes

the computational results obtained from this set of experiments. Note that in re-

porting the computational results in Table 3.2 and as well as in the following ta-

bles, we highlight the algorithm which produces the smallest running time given

all the instances are solved by other algorithms under investigation within the pre-

specified optimality gap. However, if such a quality solution is not found within

the maximum time or iteration limit, then the algorithm with the smallest opti-

mality gap is highlighted. We now summarizes the key observations from Table

3.2 below:

• Results in Table 3.2 indicate that the basic CG algorithm is only able to
solve 1 out of 9 problem instances within the pre-specified termination cri-
teria. For the remaining instances (instances 2-9), Gurobi gets out of memory
(OOM) in solving model [LIPM]. The computation performance improves
slightly when SAA algorithm is integrated with the CG algorithm, namely,
the CG+SAA algorithm. With this hybrid technique, we now can able to
solve an additional instance (instance 2) within the pre-specified termina-
tion criteria, but the status of 5 out of 9 problem instances still remain out
of memory. We further observe a slight improvement in computational per-
formances when L-shaped algorithm is incorporated with the CG+SAA al-
gorithm, namely, the CG+SAA+L algorithm. With this incorporation, 3 out
of 9 instances are now solvable within the pre-specified termination crite-
ria while, most importantly, none of the instances get out of memory even
though leaving with a high optimality gap within the time limit.

• Additional experiments are then conducted to examine how different accel-
erated techniques in the L-shaped algorithm enhance the computational per-
formances of the CG+SAA+L algorithm, namely, the CF-I and CF-II algo-
rithms. Results in Table 3.2 further indicate that on average CF-I and CF-II
algorithms save 5.35% and 12.54% computational time, respectively, over the
CG+SAA+L algorithm. Additionally, the average optimality gap of the CF-
I and CF-II algorithms now drop down to 6.04% and 4.51%, respectively,
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from 16.99% as reported by the CG+SAA+L algorithm. Note that the differ-
ence between CF-I and CF-II algorithms is the incorporation of the scenario
bundling technique as discussed in section 3.4.3.4. To summarize, algorithm
CF-II demonstrates high computational performance over CF-II but leaves
with high optimality gap in solving problem [LIPM] within the pre-specified
time limit.

Table 3.2

Experimental result for all cuts presented in section

Instance

No.

CG CG+SAA CG+SAA+L CF-I CF-II

t(sec) ε(%) q t(sec) ε(%) q t(sec) ε(%) q t(sec) ε(%) q t(sec) ε(%) q

1 5,219 0.99 1 4,788 0.75 2 4,321 0.43 2 3,370 0.06 2 3,236 0.02 2

2 OOM 7,150 0.88 2 3,386 0.52 1 5,418 0.05 2 4,767 0.13 2

3 OOM 10,800 4.24 3 9,345 0.33 2 6,516 0.11 2 5,473 0.09 2

4 OOM 10,800 25.98 2 10,800 24.12 1 8,167 0.97 1 6,996 0.73 1

5 OOM OOM 10,800 23.12 1 10,800 8.11 2 7,913 0.87 1

6 OOM OOM 10,800 24.93 1 10,800 7.12 2 10,800 5.64 2

7 OOM OOM 10,800 27.12 1 10,800 8.07 2 10,800 6.12 2

8 OOM OOM 10,800 25.42 1 10,800 10.42 1 10,800 11.54 1

9 OOM OOM 10,800 26.92 1 10,800 19.42 1 10,800 10.19 1

Average 5,219 0.99 1 8,385 7.96 2 9,095 16.99 1 8,608 6.04 2 7,954 4.51 2

OOM: out of memory

Realizing from the results in Table 3.2 that even though algorithms CF-I and

CF-II demonstrate high potential, on average 50% instances still remain unsolved

within the pre-specified time limit. Hence, we employ different parallelization

techniques, namely, the PS-I and PS-II algorithms, to further improve the compu-

tational performances of the CF-I and CF-II algorithms. The results are reported in
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Tables 3.3 and 3.4, respectively. The key findings from these computational results

are summarized below:

• As evidenced from the results in Table 3.3 that the incorporation of Paral-
lelization scheme I (PS-I algorithm) in CF-I algorithm, namely, the CF-I+PS-I
algorithm, significantly drops the optimality gap and running time of the ba-
sic CF-I algorithm. On average, we observe a drop in running time by 52.9%
while producing an optimality gap of 0.36% by CF-I+PS-I over the CF-I al-
gorithm. Most importantly, algorithm CF-I+PS-I is now capable of solving
all the problem instances reported in Table 4.1 by obeying the pre-specified
termination criteria. Note that even though the incorporation of Paralleliza-
tion scheme II (PS-II algorithm) in CF-I algorithm, namely, the CF-I+PS-II
algorithm, slightly improves the computation performances (both in running
time and optimality gap) of the basic CF-I algorithm, 4 out of 9 instances still
left with high optimality gap.

• Similar observations can also be made with the CF-II algorithm (shown in
Table 3.4) when both Parallelization schemes I and II are incorporated with
the CF-II algorithm, namely, the CF-II+PS-I and CF-II+PS-II algorithms.
Yet again we observe that algorithm CF-II+PS-I is capable of solving all
the problem instances reported in Table 3.1 in less than 1% optimality gap
while solving problem [LIPM] approximately twice faster than the CF-II al-
gorithm. On the other hand, the CF-II+PS-II algorithm, even though drops
the average optimality gap of the CF-II algorithm from 4.15% to 2.43%, still
unable to solve 4 out of 9 problem instances by obeying the pre-specified
termination criteria.

• Our final observations can be made between the CF-I+PS-I and CF-II+PS-I
algorithms where it is evident from the results in Tables 3.3 and 3.4 that CF-
II+PS-I slightly outperforms CF-I+PS-I with respect to both running time
and optimality gap produced by the algorithms. Even though both CF-I+PS-
I and CF-II+PS-I algorithms are now capable of solving all the problem in-
stances reported in Table 3.1 in less than 1% optimality gap, algorithm CF-
II+PS-I saves an additional 8.8% running time in solving problem [LIPM]
while producing the optimality gaps reported by Tables 3.3 and 3.4, respec-
tively. To summarize, algorithm CF-II+PS-I seems to offer high quality solu-
tions consistently within our tested experimental range.
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Table 3.3

Experimental results for CF-I under different parallelization schemes

Instance

No.

CF-I CF-I+PS-I CF-I+PS-II

t(sec) ε(%) q t(sec) ε(%) q t(sec) ε(%) q

1 3,370 0.06 2 927 0.03 2 2,759 0.06 2

2 5,418 0.05 2 1,449 0.08 2 4,851 0.39 2

3 6,516 0.11 2 1,873 0.42 2 5,697 0.42 2

4 8,167 0.98 1 2,287 0.16 1 7,292 0.06 1

5 10,800 8.12 2 4,631 0.10 2 8,942 0.80 1

6 10,800 7.12 2 6,153 0.56 2 10,800 3.22 2

7 10,800 8.08 2 4,123 0.49 1 10,800 3.89 2

8 10,800 10.43 1 9,071 0.50 2 10,800 14.53 1

9 10,800 19.43 1 10,214 0.87 2 10,800 17.65 1

Average 8,608 6.04 2 4,550 0.36 2 8,082 4.56 2
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Table 3.4

Experimental results for CF-II under different parallelization schemes

Instance

No.

CF-II CF-II+PS-I CF-II+PS-II

t(sec) ε(%) q t(sec) ε(%) q t(sec) ε(%) q

1 3,236 0.02 2 895 0.11 2 2,515 0.03 2

2 4,767 0.14 2 1,289 0.20 2 4,107 0.06 2

3 5,473 0.09 2 1,607 0.26 2 4,752 0.27 2

4 6,996 0.74 1 1,995 0.12 1 5,894 0.16 1

5 7,913 0.87 1 3,279 0.22 1 6,589 0.30 1

6 10,800 5.65 2 5,817 0.44 2 10,800 4.19 2

7 10,800 8.12 2 3,998 0.27 1 10,800 3.71 2

8 10,800 11.55 1 8,469 0.30 2 10,800 5.53 1

9 10,800 10.20 1 9,979 0.38 2 10,800 7.65 1

Average 7,954 4.15 2 4,148 0.26 2 7,451 2.43 2
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3.6 Conclusion and Future Research Directions

This paper proposes a two-stage stochastic non-linear programming model to

design and manage an inland waterway transportation-based logistics network

while stochastic nature of commodity supply and water-level fluctuations are taken

into consideration. The model is designed to jointly optimize trip-wise towboat

and barge assignment decisions and different supply chain decisions (e.g., inven-

tory management, transportation decisions) in such a way that the congestion as

well as the overall system cost can be minimized under uncertainty. We present a

parallelized hybrid nested decomposition algorithm to solve our proposed model.

Results indicate that the presented parallelization schemes with hybrid nested de-

composition algorithm can efficiently solve our proposed optimization model in

a timely manner. We utilize few Southeast US States as a testbed to visualize and

validate the modeling results. A number of managerial insights, including the im-

pact of uncertain water level fluctuation and supply, and port congestion on the

inland waterway transportation network, are drawn from the case study.

To summarize, the major contributions of this study include: (i) proposing

a multi-commodity, multi-time period two-stage stochastic non-linear program-

ming model that not only optimizes the inland waterway port operations but

also minimizes the overall system cost considering the impacts of congestion un-

der supply uncertainty; (ii) presenting and testing an efficient hybrid nested de-

composition algorithm combining Constraint Generation Algorithm, Sample Av-

erage Approximation, and an enhanced L-shaped Algorithm to solve realistic-size
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network design problems; (iii) developing and testing different parallelization

schemes to parallelize the proposed nested decomposition algorithm; and (iv)

drawing managerial insights from a real-life case study. Note that the proposed

methodologies can be adopted to efficiently solve different stochastic optimization

problems. Further, the managerial insights obtained from this study may help de-

cision makers to design and manage a cost-efficient inland waterway-based sup-

ply chain network under uncertainty.

This study can be extended in several research directions. First, it would be in-

teresting to see how the detailed consideration of barge and tow routing, schedul-

ing, and re-positioning issues impact the inland waterway port operations. Next,

the impacts of port operations under both natural (e.g., hurricane, tornado) and/or

human-induced (e.g., cyber attack) disruptions also need to be investigated. These

issues will be addressed in future studies.
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CHAPTER 4

SOLVING A STOCHASTIC INLAND WATERWAY PORT MANAGEMENT

PROBLEM USING A PARALLELIZED HYBRID DECOMPOSITION

ALGORITHM

4.1 Introduction

Inland waterway ports are indispensable components of a nation’s overall trans-

portation system and to the economy. In the U.S., the annual GDP (Gross Domestic

Product) contribution of these ports are approximately 15 billion dollars while cre-

ating more than 250,000 annual employment opportunities from this transporta-

tion sector [89]. Apart from these benefits, inland waterway ports greatly con-

tribute to a nation’s rural industrial and agricultural development [84]. However,

despite of their substantial potentiality, this segment of transportation system is

frequently impacted by many factors that hurts its productivity, including but not

limited to high water level fluctuations, congestion, aging infrastructure, delays

caused by scheduled and unscheduled closures of locks (primarily due to mainte-

nance activities), and many others [140]. For instance, in the early 2011, a severe

flood affected the inland waterway system of the U.S., causing a total damage of

approximately $8.5 billions. However, in the very next year, waterways experi-

enced severe drought causing a number of barges to run aground [140]. Consider-

159



www.manaraa.com

ing the severity and frequency of this vital inland waterway-specific issue and the

long term sustainment of this transportation sector, developing reliable optimiza-

tion models that account for different factors which frequently impact the inland

waterway port operations (e.g., waterway fluctuations, commodity supply fluctu-

ations, barge/towboat maintenance and availability, delays in locks) are of utmost

importance.

Inland waterway transportation holds some distinctive properties which makes

it different from the seaports. To mention a few, these ports generally handle barge

traffic drafting up to 9 feet only, are located primarily near smaller bodies of water

(e.g., rivers and canals), usually land intensive, and/or handle smaller counts of

larger users and a large number of smaller users [84]. Additionally, the water level

at the port channels and any part of the waterway, connecting two inland water-

way ports, undergo severe fluctuations in different time periods of the year [139].

Depending on the severity of this fluctuation, these ports, including the waterway

itself, often experience disruptions, such as drought and flood that may tremen-

dously impact or even cease the port operations for a prolonged period of time.

Further, these ports commute heavy volume of highly seasonal and perishable

commodities (e.g., rice, corn, woodchips, soybean). The seasonality of the com-

modities coupled with time varying waterway conditions excessively delay the

port operations, which directly impacts the operational planning of the ports un-

der consideration. All these prevalent challenges restrict the optimization models

available in the literature for the maritime transportation to be directly applicable
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for the inland waterway ports. Therefore, in order to ensure long term sustain-

ment of the inland waterway ports, sophisticated optimization models need to be

developed that best capture the unique characteristics of this cost efficient, reliable,

and environmentally-friendly transportation sector.

Among different variants of the waterway port-specific problems, a number

of research develops optimization models to address diversified seaport-related

problems, such as ship routing and scheduling [29], inventory routing [5], berth

allocation and scheduling [141], empty container re-positioning [43], sailing speed

optimization [141], bunker consumption [145], emission consideration [141], dis-

ruption [126, 56], port delays [148], and many others. Few researchers attempted

to develop simulation models to address those similar problems (e.g., [125, 44]).

Even though deep penetration to seaport research is observed, inland waterway

ports did not receive much attention from the research community. A few studies

has been carried out that characterize and model the specifics of deep draft inland

ports, capable of handling container cargos and ships; however, almost no research

has been conducted to date that puts specific considerations to model shallow draft

inland ports1. Realizing their significance on the overall transportation system and

economy, better understanding of the shallow draft inland waterway ports is im-

perative in order to successfully design and manage a sound and efficient inland

waterway transportation network.

1The ports that are unable to handle barges/vessels drafting more than 9 feet are known as
shallow draft inland ports. Deep draft inland ports, on the other hand, are the ones that can handle
barges/vessels drafting more than 9 feet.
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To fill this research gap, this study proposes a mathematical model that real-

istically captures different inland waterway port-related issues (e.g., water level

fluctuations, barge/towboat assignments and availabilities, weight and volumet-

ric capacity restrictions of barges, product mix restrictions, storage restrictions)

under a same decision making framework and illustrates their impacts on design-

ing and managing an inland waterway transportation network. More specifically,

we propose a capacitated, multi-commodity, multi-period, two-stage stochastic

mixed-integer linear programming model that jointly optimizes trip-wise barge

and towboat assignment decisions along with different crucial supply chain deci-

sions (e.g., inventory management, transportation decisions) with a goal of min-

imizing the overall system cost under water level and commodity supply uncer-

tainty.

The proposed mathematical model is an extension of a fixed charged, uncapac-

itated network flow problem, which is already known to be an NP-hard prob-

lem [74]. To alleviate this challenge and to obtain solutions within a limited com-

putational time, we develop a highly customized parallelized hybrid decomposi-

tion algorithm which combines Sample Average Approximation with an enhanced

Progressive Hedging (PH) and Nested Decomposition (ND) algorithm. Several

techniques are used to enhance the PH algorithm, such as penalty parameter up-

dating, global and local heuristics, and scenario bundling techniques. On the other

hand, techniques, such as problem-specific valid inequalities, strengthened Ben-

ders and Lagrangian cuts, are used to enhance the performance of the ND algo-

162



www.manaraa.com

rithm. To the end, two parallelization schemes are proposed to parallelize the

entire hybrid decomposition algorithm. Extensive computational experiments are

presented to demonstrate how the parallelized hybrid decomposition algorithm

effectively and efficiently solves the proposed mathematical model.

Apart from proposing the mathematical model and solution approaches, we

demonstrate a real-life application by utilizing the inland waterway transportation

network along the lower Mississippi River. The outcome of this study provides a

number of managerial insights, such as the impact of water level fluctuations on

towboat and barge selection and commodity supply fluctuations on overall system

performance, which may effectively aid decision makers to design a cost-efficient

shallow draft inland waterway transportation network.

this paper is organized as follows. Section 4.2 provides a comprehensive re-

view of the related works and distinguish our work with the existing literature.

Section 4.3 discusses the problem and introduces the proposed mathematical model.

The decomposition algorithms used to solve our proposed model are outlined in

Section 4.4. Section 4.5 presents a real life case study and discusses the compu-

tational performances of the proposed algorithms. Finally, Section 4.6 concludes

this study and discusses future research directions.

4.2 Literature Review

Deep draft inland waterway ports have received tremendous attention from the

research community in the last years. Different researchers have studied several
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realistic aspects of the deep draft inland waterway ports, including barge and tow-

boat routing and repositioning problem, berth allocation, port disruption, delays

in locks and dams, and few others. This section provides a comprehensive review

on these specific research problems and distinguishes our work from the existing

literature.

Berth allocation problem is a common problem that typically experiences by

both seaports and inland waterway ports. To date, few researchers have attempted

to solve this problem for the deep draft inland waterway ports. For instance, Gru-

bivsic et al. [50] solve a berth layout design problem to minimize the overall vessel

waiting time. Depuy et al. [30] consider several factors, such as fleet location ca-

pacity, total volume of barges, and average handling time, to optimally allocate

barge volume to different fleet locations. Arango et al. [11] adopt a combined

simulation-optimization approach to solve a berth allocation problem.

In addition to this research challenge, another stream of research studies how

the performances of locks and dams impact the deep draft inland waterway trans-

portation network. For instance, Ting and Schonfeld [130] utilize a simulation-

optimization framework to decide how much capacity increment is required for

the locks so that the costs associated with tow delays can be minimized. Wang

and Schonfeld [147] also adopt a combined simulation-optimization approach to

schedule the investment decisions for lock reconstruction and rehabilitation. Most

recently, Tan et al. [127] propose an optimization model that jointly optimizes ship
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schedule and sailing speed for the deep draft inland shipping services under un-

certain dam transit time.

Another stream of research focuses on optimizing the barge routing and empty

container repositioning problem for the deep draft inland waterway ports. One

such study is conducted by Braekers et al. [20] where the authors optimize barge

routing and empty container repositioning between a sea port and few hinterland

ports. The extension of this work [19] includes vessel capacity and round trip

service frequency to the barge routing and empty container repositioning prob-

lem. Marass [76] proposes a mixed-integer linear programming (MILP) model to

optimize the transport routes of chartered container ships or tows for an inland

waterway port. Most recently, An et al. [9] formulate a mixed-integer nonlinear

programming (MINLP) model to solve an empty container repositioning shipping

network design problem.

Realizing that a port may fail either due to natural (e.g., hurricane, tornado)

or human-induced (e.g., cyber-attack) disaster, few studies focus on identifying

the resiliency of a deep draft inland waterway port. For instance, Baroud et al.

[13] convert different stochastic resilience-based component importance measures

into an optimization framework to determine the important waterway links and

the precedence of link recovery in case of a disaster. Oztanriseven and Nachtman

[102] develop a simulation-based approach to estimate the potential economic im-

pacts of inland waterways disruption response. The authors utilize McClellan-

Kerr Arkansas River navigation system as a testbed to visualize and validate the
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simulation results. Hosseini and Barker [59, 58] propose a Bayesian network to

model the infrastructure resilience of an inland waterway port. Other studies re-

lated to inland waterway ports include the consideration of port-specific economic

analysis [4], optimal dredging scheduling and investment decisions [113], the ef-

ficiency of inland waterway container terminals [152], tug scheduling between

seaport to inland ports [157], and carbon emission [155].

Different from the studies discussed above, our study captures different real-

istic shallow draft inland waterway port-related features (e.g., water level fluctu-

ation, delay in locks and dams, towboat and barge assignment decisions, barge

availability and maintenance) and magnifies their impact on the overall supply

chain system performance. Note that till now a number of existing studies in the

literature consider inland waterway ports as a medium of transportation while

designing a supply chain network, examples including but not limited to biomass

supply chain (e.g., [109]), coal supply chain (e.g., [35]), grain supply chain (e.g.,

[31]), and many other application areas. However, very few studies have captured

the true characteristics of the inland waterway transportation (e.g., water level

fluctuation, barge/towboat assignment decisions, barge availability and mainte-

nance) while solving a network designing problem. Our study captures one of

the most important and impactful features of the shallow waterway transporta-

tion network, water level fluctuation. Proper consideration of this issue can sig-

nificantly help obtain reliable tripwise commodity transportation decisions under

an extremely uncertain situation. Water level issues are well studied in maritime
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transportation [93, 24, 114]. However, in the case of inland waterway transporta-

tion, not much research attempts are observed that put specific focus on this issue.

Few studies discuss the impact of water level issue from an economic perspective,

such as [77, 100]. These studies investigate the impact of climate change and wa-

ter level on different economical factors of inland waterway transportation, such

as price per tonne transported, average annual shipping costs, average operating

costs, and freight prices per tonne, rather than considering the problem from a

real-life transportation network viewpoint. Hence, it is obvious that proper mod-

eling efforts, that capture different realistic features, need to be made in order to

design a reliable inland waterway transportation network.

4.3 Problem Description and Mathematical Model Formulation

This section presents a capacitated, multicommodity, multiperiod, two-stage

stochastic programming model formulation to efficiently design and manage an

inland waterway-based logistics network taking the stochastic, time-variant na-

ture of commodity supply and water-level fluctuations into account. The main

objective of the model is to optimize a number of inland waterway port-related

operational decisions (e.g., towboat and barge assignment, inventory, and com-

modity transportation decisions) under uncertainty and in such a way that the

overall system cost can be minimized. Figure 4.1 illustrates a simplified logistics

network consisting of two origin ports and three destination ports.
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Figure 4.1

Illustration of an inland waterway transportation network

Let us first denote a logistics network G = (N ,A) where N be the set of

nodes and A be the set of arcs connecting the nodes within the logistics net-

work. Set N consists of a set of origin and destination inland waterway ports,

denoted by I = {1, 2, 3, ..., I} and J = {1, 2, 3, ..., J}, respectively. The network

requires to transport a set of commodities M = {1, 2, 3, ..., M} through the two

origin and destination ports over a predetermined time periods, denoted by set

T = {1, 2, 3, ..., T}. In order to handle the appropriate interconnections between

each origin and destination port, we introduce two subsets Ij and Ji in our model.

The first subset Ij denotes the subset of origin ports connected to destination port
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j ∈ J while the second subset Ji denotes the subset of destination ports connected

to origin port i ∈ I . To handle different stochastic scenarios (e.g., commodity sup-

ply, water-level fluctuations), scenario set ω ∈ Ω is introduced where ρω defines

the probability of a given realization and ρω ≥ 0 and ∑ω∈Ω ρω = 1.

Inland waterway ports handle a number of agricultural products which are

highly seasonal in nature, such as corn, rice, and woodchips. To exemplify, rice

becomes available only between August to October in a given calendar year. Like-

wise, corn is harvested between mid-July to late November of each year [133]. This

seasonality coupled with stochastic availability of agricultural products create a

serious challenge for decision makers to plan and manage the port operations. Let

us assume that the origin ports i ∈ I are supplied with a stochastic amount of com-

modity ϕmitω of type m ∈ M at time period t ∈ T under scenario ω ∈ Ω. Depend-

ing on the demand, these commodities need to be transported in different destina-

tion ports via an inland waterway transportation network, which utilizes an asso-

ciation of barges and towboats to carry these commodities. Let S = {1, 2, 3, ..., S}

be the set of towboats and B = {1, 2, 3, ..., B} be the set of barges available to carry

commodities between any pair (i, j) ∈ (I ,J ) of the origin-destination ports. Set

S is arranged depending on the capabilities of the towboats such that towboat 1

in set S represents the least powerful towboat while S represents the most pow-

erful towboat. Based on the capabilities, we denote δs and δs to be the maximum

and minimum number of barges that can be carried out by any particular towboat

s ∈ S . Let ψst to denote the fixed cost associated with using a towboat s ∈ S at
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time period t ∈ T . Further, loading and unloading commodity m ∈ M in barge

b ∈ B, having weight carrying capacity wb and volumetric capacity vb, at time pe-

riod t ∈ T incurs a fixed cost of ηmbt. Let cmbsijt to denote the unit transportation

cost of commodity m ∈ M using barge b ∈ B connected with towboat s ∈ S along

arc (i, j) ∈ (I ,J ) at time period t ∈ T . Since the barges and towboats are required

to go through periodic maintenance, we capture these factors by introducing two

binary availability parameters abit and asit, respectively.

Each port i ∈ I ⋃J is assumed to carry inventory, restricted by maximum

commodity storage capacity of hi. The inventory holding cost for commodity

m ∈ M in port i ∈ I ⋃J at time period t ∈ T is denoted by hmit. We also

capture the deterioration rate of carrying commodity m ∈ M between two con-

secutive time periods by introducing parameter αm. The waterway depth at port

channel or throughout the waterbody may vary in different time period of the

year depending upon the amount of sediment, silt, or mud accumulated in the

waterbed. If such accumulation is too intense at any portion of the waterway

(e.g., near ports or between two connecting ports), it increases the height of the

waterbed which results in a decrease in the waterdepth. This waterdepth reduc-

tion can sometimes be too intense that it seriously impacts the transportation of

shallow draft water vessels through the waterway. Resultantly, the barges need to

carry commodities below to their designed weight carrying capacities, wb, to avoid

being stuck at any point of their navigational waterway. Let us define witω and

wjtω to denote the maximum weight carrying capacity at port channel i ∈ I ⋃J
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and wijtω to be the allowable weight that can be carried through the waterway

between port pair (i, j) ∈ (I ,J ) at time period t ∈ T under scenario ω ∈ Ω.

Therefore, the maximum effective weight that a barge m ∈ M can carry under this

restriction would be the minimum weight between the weight capacity near ori-

gin and destination ports, namely, witω and wjtω, and the channel between each

origin-destination ports (i, j) ∈ (I ,J ), namely, wijtω, i.e., min{wijtω, wb} where

wijtω := min{witω, wijtω, wjtω}. Considering the uncertainty associated with this

restriction, we consider wijtω to be a stochastic parameter in our proposed model

formulation. Finally, we assume that the commodity demand at destination ports,

denoted by dmjt, can be satisfied either through the inland waterway transporta-

tion network or via an external source by paying a unit penalty cost of πmjt. We

now summarize the following notations for our proposed mathematical model

formulation.

Sets:

• I : set of origin ports, i ∈ I

• J : set of destination ports, j ∈ J

• M: set of commodities, m ∈ M

• S : set of towboats, s ∈ S

• B: set of barges, b ∈ B

• T : set of time periods, t ∈ T

• Ij: set of origin ports connected to destination port j, ∀j ∈ J

• Ji: set of destination ports connected to origin port i, ∀i ∈ I
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• Ω: set of possible scenarios ω, ∀ω ∈ Ω

Parameters:

• ϕmitω: supply availability of product m ∈ M in port i ∈ I at time period
t ∈ T under scenario ω ∈ Ω

• ψst: fixed cost of using towboat s ∈ S at time period t ∈ T

• ηmbt: fixed cost for loading and unloading commodity m ∈ M in barge b ∈ B
at time period t ∈ T

• cmbsijt: unit cost of transporting commodity m ∈ M along arc (i, j) ∈ (I ,J )
using barge b ∈ B of towboat s ∈ S at time period t ∈ T

• hi: commodity storage capacity at port i ∈ I ⋃J
• dmjt: demand for commodity of type m ∈ M in port j ∈ J at time period

t ∈ T

• αm: deterioration of commodity m ∈ M

• asit, abit: binary availability of towboat and barge at port i ∈ I in time period
t ∈ T

• δs, δs: maximum/minimum number of barges to carry by towboat s ∈ S

• δs: capacity of the most powerful towboat s ∈ S

• wijtω: the minimum of {witω, wijtω, wjtω} where witω and wjtω indicate the
maximum weight carrying capacity at port i ∈ I ⋃J and wijtω the allowable
weight that can be carried between the channel (i, j) ∈ (I ,J ) at time period
t ∈ T under scenario ω ∈ Ω. The last weight (wijtω) depends on the depth
of the waterway and should not exceed the minimal water-level between the
origin-destination ports

• ρm: density of commodity m ∈ M

• vb: volume capacity of barge b ∈ B

• wb: weight capacity of a barge b ∈ B

• hmit: unit inventory holding cost for commodity m ∈ M in port i ∈ I ⋃J at
time period t ∈ T

• θit: total number of barges available in port i ∈ I at time period t ∈ T
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• πmjt: unit penalty cost of not satisfying demand for commodity m ∈ M in
port j ∈ J at time period t ∈ T

• γmit: procurement cost of commodity m ∈ M in port i ∈ I at time period
t ∈ T

• tl, tu: average loading and unloading time of a barge

• ∆: average delay in locks

• lij: number of locks between origin port i ∈ I and destination port j ∈ J

• dij: distance between origin port i ∈ I and destination port j ∈ J

• v̄st: average speed of towboat s ∈ S at time period t ∈ T

• tij: allowable transport time limit between each origin port i ∈ I to destina-
tion port j ∈ J

• ρω: probability of scenario ω ∈ Ω

First Stage Decision Variables:

• Ysijt: 1 if a towboat s ∈ S is used in arc (i, j) ∈ (I ,J ) at time period t ∈ T ; 0
otherwise

• Ymbsijt: 1 if commodity m ∈ M is carried on barge b ∈ B of towboat s ∈ S
from port i ∈ I to port j ∈ J at time period t ∈ T ; 0 otherwise

Second Stage Decision Variables:

• Zmitw: amount of commodities of type m ∈ M processed at port i ∈ I at
time period t ∈ T under scenario ω

• Xmbsijtw: amount of commodities of type m ∈ M transported using barge
b ∈ B of towboat s ∈ S along arc (i, j) ∈ (I ,J ) at time period t ∈ T under
scenario ω ∈ Ω

• Hmitw: amount of commodities of type m ∈ M stored in port i ∈ I ⋃J at
time period t ∈ T under scenario ω ∈ Ω

• Umjtw amount of commodities of type m ∈ M shortage in destination port
j ∈ J at time period t ∈ T under scenario ω ∈ Ω
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We now introduce the following first- and second-stage decision variables for

our proposed two-stage stochastic programming model formulation. The first-

stage decision variables Y1 := {Ysijt|∀s ∈ S , i ∈ I , j ∈ Ji, t ∈ T } and Y2 :=

{Ymbsijt|∀m ∈ M, b ∈ B, s ∈ S , i ∈ I , j ∈ J , t ∈ T } determine which towboat to

use between an origin-destination pair in a given time period and which barge to

use for carrying any particular product at any given origin port, respectively, i.e.,

Ysijt =


1 if a towboat s is used between ports (i, j) ∈ (I ,J ) at time period t

0 otherwise;

Ymbsijt =


1 if barge b connected to towboat s is used to carry commodity m

between port i and j in time period t

0 otherwise;

For notation simplicity, we define Y as Y := Y1⋃Y2. The second-stage decision

variables X := {Xmbsijtω|∀m ∈ M, b ∈ B, s ∈ S , (i, j) ∈ (I ,J ), t ∈ T , ω ∈ Ω} to

denote the amount of commodities of type m ∈ M transported using barge b ∈ B

of towboat s ∈ S along arc (i, j) ∈ (I ,J ) at time period t ∈ T under scenario

ω ∈ Ω; H := {Hmitω|∀m ∈ M, i ∈ I ⋃J , t ∈ T , ω ∈ Ω} to denote the amount of

commodities of type m ∈ M stored in port i ∈ I ⋃J at time period t ∈ T under

scenario ω ∈ Ω; and U := {Umjtω} to denote the amount of commodities of type

m ∈ M shortage in destination port j ∈ J at time period t ∈ T under scenario

ω ∈ Ω.
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It needs to be noted here that the inland waterway transportation frequently

impacted by the possible delays experienced by the barges in locks between two

connecting ports. To simplify the modeling process, in this study we ignore the

congestion occurred in the locks. Instead, we capture this delay through a feasible

time limit, denoted by tij. The introduction of tij provides a time window for

towboats to deliver the commodities between each source-destination pair which

otherwise will not be economical/feasible if violated. Let ∆, lij, and dij to represent

the average delay in locks, the number of locks, and actual waterway distance

between each origin-destination port (i, j) ∈ (I ,J ). We further denote v̄st to be

the average speed of a towboat s ∈ S and tl and tu to be the average loading and

unloading time for a barge. The total travel time for a towboat s ∈ S between each

origin-destination port (i, j) ∈ (I ,J ) at time t ∈ T can now be approximated as:{
∑m∈M∑b∈B(tl + tu)Ymbsijt + (

dij
v̄st

+ ∆lij)Ysijt

}
, while this travel time is assumed

to be restricted by a feasible time limit tij.

We now introduce the objective function of our proposed two-stage stochas-

tic programming mathematical formulation, referred to as [IWT]. Note that the

decisions about towboat and barge selection (Y) are made prior to a realization

of any stochastic event. However, after the stochasticity is revealed, a number of

second-stage decisions, such as transportation (X), storage (H), and shortage (U)

decisions, are made. Our proposed mathematical model is introduced below.
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[IWT] Minimize
Y

∑
s∈S

∑
i∈I

∑
j∈Ji

∑
t∈T

(
ψstYsijt + ∑

m∈M
∑
b∈B

ηmbtYmbsit

)
+ ∑

ω∈Ω
ρωQ(Y, ω)

(4.1)

subject to

∑
m∈M

Ymbsijt ≤ 1 ∀b ∈ B, s ∈ S , i ∈ I , j ∈ Ji, t ∈ T (4.2)

δsYsijt ≤ ∑
m∈M

∑
b∈B

Ymbsijt ≤ δsYsijt ∀s ∈ S , i ∈ I , j ∈ Ji, t ∈ T (4.3)

∑
m∈M

∑
b∈B

∑
s∈S

∑
j∈J

Ymbsijt ≤ θit ∀i ∈ I , t ∈ T (4.4)

∑
j∈Ji

∑
s∈S

Ysijt ≤ τit ∀i ∈ I , t ∈ T (4.5)

∑
j∈Ji

Ysijt ≤ asit ∀s ∈ S , i ∈ I , t ∈ T (4.6)

∑
m∈M

∑
s∈S

Ymbsijt ≤ abit ∀b ∈ B, i ∈ I , j ∈ Ji, t ∈ T (4.7)

∑
m∈M

∑
b∈B

(tl + tu)Ymbsijt ≤ tij −
(

dij

vst
+ ∆lij

)
Ysijt∀s ∈ S , i ∈ I ,

j ∈ Ji, t ∈ T (4.8)

Ymbsijt ∈ {0, 1} ∀m ∈ M, b ∈ B, s ∈ S , i ∈ I ,

j ∈ Ji, t ∈ T (4.9)

Ysijt ∈ {0, 1} ∀s ∈ S , i ∈ I , j ∈ Ji, t ∈ T (4.10)

with Q(Y, ω) being the solution of the following second-stage problem:

Q(Y, ω) = Minimize
X,H,U

∑
t∈T

∑
m∈M

(
∑

i∈I ⋃J hmitHmitω + ∑
b∈B

∑
s∈S

∑
(i,j)∈(I ,J )

cmbsijtXmbsijtω

+ ∑
i∈I

γmitZmitω + ∑
j∈J

πmjtUmjtw

)
(4.11)
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subject to

Zmitω ≤ ϕmitω∀m ∈ M, i ∈ I , t ∈ T ,

ω ∈ Ω (4.12)

Zmitω + (1− αm)Hmi,t−1,ω = ∑
b∈B

∑
s∈S

∑
j∈Ji

Xmbsijtω + Hmitω

∀m ∈ M, i ∈ I , t ∈ T , ω ∈ Ω (4.13)

∑
b∈B

∑
s∈S

∑
i∈Ij

Xmbsijtω + (1− αm)Hmj,t−1,ω = dmjt + Hmjtω −Umjtw

∀m ∈ M, j ∈ J , t ∈ T , ω ∈ Ω (4.14)

∑
m∈M

Hmitω ≤ hi∀i ∈ I
⋃
J , t ∈ T , ω ∈ Ω (4.15)

Xmbsijtω ≤ min{wijtω, wb}Ymbsijt∀m ∈ M, b ∈ B,

s ∈ S , i ∈ I , j ∈ Ji, t ∈ T , ω ∈ Ω(4.16)(Xmbsijtω

ρm

)
≤ vbYmbsijt∀m ∈ M, b ∈ B, s ∈ S ,

i ∈ I , j ∈ Ji, t ∈ T , ω ∈ Ω (4.17)

Xmbsijtω, Hmitω, Hmjtω, Zmitω ∈ R+ (4.18)

The objective function (4.1) minimizes the first-stage costs and the expected second-

stage costs. The first two terms in (4.1) represent the fixed costs associated with

using towboats and loading and unloading commodities into the barges. Con-

straints (4.2) restrict the loading of one commodity m ∈ M in a given barge b ∈ B

at time period t ∈ T . Constraints (4.3) restrict the minimum (δs) and maximum

(δs) number of barges that can be connected with a given towboat s ∈ S at any

time period t ∈ T . Constraints (4.4) and (4.5) set the maximum availability of
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barges and towboats in a given port i ∈ I at time period t ∈ T to θit and τit, re-

spectively. The unavailability of barges and towboats due to period maintenance

activities are captured by binary parameters asit and abit at constraints (4.6) and

(4.7), respectively. Constraints (4.8) set total travel time restriction for a towboat

s ∈ S between each origin-destination port (i, j) ∈ (I ,J ) at time period t ∈ T . Fi-

nally, constraints (4.9) and (4.10) set integrality restrictions for barge and towboat

selections.

The second-stage objective function (4.11) consists of four terms: the first term

represents the costs associated with storing commodities at the source and desti-

nation ports; the second term represents the transportation costs of flowing com-

modities within the inland waterway transportation network; last two terms in

the objective function, respectively, capture the commodity processing costs at any

origin port and the commodity shortage costs at any destination port. Constraints

(4.12) restrict the commodity processing capability of an origin port i ∈ I in time

period t ∈ T under scenario ω ∈ Ω to a given availability ϕmitω. Constraints

(4.13) are the flow balance constraints for origin ports i ∈ I , indicating that all the

processed commodity m ∈ M can be either stored or transported to a destina-

tion port j ∈ Ji at time period t ∈ T . Constraints (4.14) maintain flow balance at

destination ports j ∈ J in time period t ∈ T . These constraints indicate that the

demand (dmjt) for commodity m ∈ M at any destination port j ∈ J in time period

t ∈ T can be satisfied either via the origin ports, stored inventory, or via an exter-

nal source while the balance can be stored in the destination port’s inventory for
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future use. The inventory storage restriction at any port i ∈ I ⋃J is imposed via

constraints (4.15). Constraints (4.16) and (4.17) set weight and volumetric capacity

restriction for a given barge b ∈ B carrying commodity m ∈ M between each

origin-destination port (i, j) ∈ (I ,J ) at time period t ∈ T . Finally, constraints

(4.18) represent the standard non-negativity constraints.

4.4 Solution Approach

By setting |Ω| = |T | = |S| = |B| = 1, problem [IWT] can be reduced to a fixed

charge network flow problem which is already known to be an NP-hard problem

[12, 65]. Therefore, we find it difficulty to solve the large instances of [IWT] using

commercial solvers, such as Gurobi. To overcome this computational burden, we

propose a parallelized hybrid decomposition algorithm combining Sample Aver-

age Approximation (SAA) algorithm with an enhanced Progressive Hedging (PH)

algorithm. The techniques used to enhance the PH algorithm are penalty parame-

ter updating, global and local heuristics, scenario bundling, and a nested decom-

position algorithm. The aim of adopting all the solution techniques is to generate

quality solutions in solving large instances of problem [IWT] in a reasonable com-

putational time.

4.4.1 Sample Average Approximation

To generate reliable solutions, problem [IWT] needs to be investigated with a large

number of scenarios which may pose serious challenge from solution standpoint.

To alleviate this challenge, we adopt Sample Average Approximation (SAA) method

[119, 107]. SAA is a well known technique that has been widely used in solv-
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ing problems in diversified application areas, including logistic and supply chain

design, vehicle routing, production-routing, and many others. Following this pro-

cedure, we generate a SAA problem by selecting a set of random samples from the

set of available scenarios. More specifically, we randomly generate a small sample

of size N from the scenario set Ω (where N � Ω) and approximate the recourse

function with the sample average function 1
N ∑n∈N Q(Y, n). Problem [IWT] can

now be approximated by the following SAA problem:

Minimize
Y∈Y

{
ĝ(Y) := ∑

t∈T

(
∑
s∈S

∑
i∈I

∑
j∈Ji

(
ψstYsijt + ∑

m∈M
∑
b∈B

ηmbtYmbsijt

)

+
1
N

N

∑
n=1

Q(Y, n)

}
(4.19)

For sufficiently large sample size N, problem (4.19) converges to the optimal

solution of the original model [IWT] with a probability of 1.0 [66]. However, with

an increase in N, the computational time required to solve problem (4.19) becomes

excessively large. In practice, there exists a trade-off between the achieved solution

quality and the computational burden associated with solving the large scenario

subproblems. Next, we summarize the steps involved in implementing the SAA

technique to solve problem [IWT] as follows:

1. Generate E independent samples of product supply and water level scenar-
ios of size N i.e., {ϕ1

e (ω), ϕ2
e (ω), ..., ϕN

e (ω)} and {w1
e (ω), w2

e (ω), ..., wN
e (ω)},

∀e = 1, 2, ..., E, where ϕ = {ϕmitω|∀m ∈ M, i ∈ I , t ∈ T , ω ∈ Ω}, w =
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{wijtω|∀i ∈ I , j ∈ J , t ∈ T , ω ∈ Ω} and solve the corresponding SAA prob-
lem:

[IWT(SAA)]Minimize
Y∈Y

{
ĝ(Y) : = ∑

t∈T

(
∑
s∈S

∑
i∈I

∑
j∈Ji

(
ψstYsijt +∑

m∈M
∑
b∈B

ηmbtYmbsijt

)

+
1
|N|

N

∑
n=1

Q(Y, n))

}
(4.20)

This SAA problem is solved for each replication e = 1, ..., E. Consider ve
N

and Ŷe
N to be the optimal objective value and the optimal solution of (4.20),

respectively.

2. In the next step, we compute the average of the optimal objective values of the
SAA problems, denoted by v̄N

E , by solving E replications. We further denote
σ2

v̄N
E

to be the variance of all the corresponding SAA problems. We then obtain

the following:

v̄N
E =

1
E

E

∑
e=1

ve
N; σ2

v̄N
E
=

1
(E− 1)E

E

∑
e=1

(ve
N − v̄N

E )
2

Parameter v̄N
E is an unbiased estimator of the optimal objective value of

[IWT], denoted by v∗, which shall satisfy this property v̄N
E ≤ v∗. This implies

that v̄N
E provides a statistical lower bound for the optimal objective value of

problem [IWT] and σ2
v̄N

E
is the estimator of the variance of this lower bound.

3. Next, a feasible first-stage solution Ỹe
N ∈ Y is chosen and utilized to evaluate

problem [IWT] with a newly generated reference sample size N′ (N′ � N)
as follows:

g̃N′(Ỹ) := ∑
s∈S

∑
i∈I

∑
j∈Ji

∑
t∈T

(
ψstỸsijt + ∑

m∈M
∑
b∈B

ηmbtỸmbsijt

)

+
1

N′
N′

∑
n=1

Q(Y, n)(4.21)

Here, the estimator g̃N′(Ỹ) provides a valid upper bound for the original
problem [IWT]. The variance of g̃N′(Ỹ) is obtained as follows:

σ2
N′(Ỹ) =

1
(N′ − 1)N′

N′

∑
n=1

{
∑
s∈S

∑
i∈I

∑
j∈Ji

∑
t∈T

(
ψstỸsijt + ∑

m∈M
∑
b∈B

ηmbtỸmbsijt

)

+Q(Y, n)− g̃N′(Ỹ)
}2
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4. Through the estimators calculated in Steps 2 and 3, the optimality gap, gapN,E,N′(Ỹ),
and its variance, σ2

gap, are calculated as follows:

gapN,E,N′(Ỹ) = g̃N′(Ỹ)− v̄N
E

σ2
gap = σ2

N′(Ỹ) + σ2
v̄N

E

The confidence interval for the optimality gap, gapN,E,N′(Ỹ), is obtained as
follow:

g̃N′(Ỹ)− v̄N
E + zα

{
σ2

N′(Ỹ) + σ2
v̄N

E

}1/2

where zα = Φ−1(1− α) , and Φ(z) is the cumulative distribution function of
the standard normal distribution.

4.4.2 Progressive Hedging Algorithm

The first step of the SAA algorithm requires solving a two-stage stochastic mixed

integer linear programming model [IWT(SAA)] with N scenarios. Although the

size of this model is considerably lower than the original problem [IWT], i.e., N �

|Ω|, depending on the size of |I|, |J |, and |T |, solving such model can still be

considered challenging. In order to address this challenge, we employ Progressive

Hedging (PH) algorithm that decomposes problem [IWT(SAA)] by scenarios [117,

95]. The cornerstone of this algorithm is scenario decomposition technique (based on

the augmented Lagrangian relaxation scheme) which is utilized to solve a number

of individual scenario subproblems. Interested readers may review the work by

[144, 150] to gain a comprehensive overview of the PH implementation.

In problem [IWT(SAA)], constraints (4.16) and (4.17) link the first-stage de-

cision variables with the second-stage decision variables. These constraints also

restrict problem [IWT(SAA)] to be separable by scenarios. To overcome this chal-

lenge, we introduce two new copy variables, namely, {Ymbsijtn}∀m∈M,b∈B,s∈S ,i∈I ,j∈J ,
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t∈T ,n∈N ∈ {0, 1} and {Ysijtn}∀s∈S ,(i,j)∈(I ,J ),t∈T ,n∈N ∈ {0, 1}, which will allow

problem [IWT(SAA)] to be decomposable by scenarios. Problem [IWT(SAA)] can

now be modified as follows:

Minimize
Y,H,X,Z,U

1
N

N

∑
n=1

{
∑
s∈S

∑
i∈I

∑
j∈Ji

∑
t∈T

(
ψstYsijtn + ∑

m∈M
∑
b∈B

ηmbtYmbsijtn

)
+ Q(Y, n)

}
(4.22)

subject to (4.12)-(4.15), (4.18), and

∑
m∈M

Ymbsijtn ≤ 1∀b ∈ B, s ∈ S , i ∈ I , j ∈ Ji, t ∈ T , n ∈ N(4.23)

δsYsijtn ≤ ∑
m∈M

∑
b∈B

Ymbsitn ≤ δsYsijtn∀s ∈ S , i ∈ I , j ∈ Ji, t ∈ T , n ∈ N (4.24)

∑
m∈M

∑
b∈B

∑
s∈S

∑
j∈Ji

Ymbsijtn ≤ θit∀i ∈ I , t ∈ T , n ∈ N (4.25)

∑
j∈Ji

∑
s∈S

Ysijtn ≤ τit∀i ∈ I , t ∈ T , n ∈ N (4.26)

∑
j∈Ji

Ysijtn ≤ asit∀s ∈ S , i ∈ I , t ∈ T , n ∈ N (4.27)

∑
m∈M

∑
s∈S

Ymbsijtn ≤ abit∀b ∈ B, i ∈ I , j ∈ Ji, t ∈ T , n ∈ N (4.28)

∑
m∈M

∑
b∈B

(tl + tu)Ymbsijtn ≤ tij −
(

dij

vst
+ ∆lij

)
Ysijtn

∀s ∈ S , i ∈ I , j ∈ Ji, t ∈ T , n ∈ N (4.29)

Xmbsijtn ≤ min{wijtn, wb}Ymbsijtn∀m ∈ M, b ∈ B,

s ∈ S , i ∈ I , j ∈ Ji, t ∈ T , n ∈ N (4.30)(Xmbsijtn

ρm

)
≤ vbYmbsijtn f orallm ∈ M, b ∈ B, s ∈ S ,

ı ∈ I , j ∈ Ji, t ∈ T , n ∈ N (4.31)

Ymbsijtn = Ymbsijtn′∀(n, n′) ∈ N, n 6= n′ (4.32)

Ysijtn = Ysijtn′∀(n, n′) ∈ N, n 6= n′ (4.33)
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Ymbsijtn ∈ {0, 1}∀m ∈ M, b ∈ B, s ∈ S , i ∈ I , j ∈ Ji, t ∈ T , n ∈ N (4.34)

Ysijtn ∈ {0, 1}∀s ∈ S , i ∈ I , j ∈ Ji, t ∈ T , n ∈ N (4.35)

Constraints (4.32) and (4.33) are referred to as nonanticipativity constraints which

not only link the first- and second-stage decision variables but also force all the

scenarios to yield same values for each first-stage decision variables. Additionally,

these constraints restrict problem (4.22) to be separable by scenarios. To overcome

this problem, we introduce two new variables,

{Ȳmbsijt}∀m∈M,b∈B,s∈S ,i∈I ,j∈Ji,t∈T ∈ {0, 1} and {Ȳsijt}∀s∈S ,(i,j)∈(I ,J ),t∈T ∈ {0, 1},

referred to as “overall design vectors”. With the introduction of this two vari-

ables, constraints (4.32) and (4.33) can now be replaced with the following set of

constraints:

Ymbsijtn = Ȳmbsijt∀m ∈ M, b ∈ B, s ∈ S , i ∈ I , j ∈ Ji, t ∈ T , n ∈ N(4.36)

Ysijtn = Ȳsijt∀s ∈ S , i ∈ I , j ∈ Ji, t ∈ T , n ∈ N (4.37)

Ȳmbsijt, Ȳsijt ∈ {0, 1} ∀m ∈ M, b ∈ B, s ∈ S , (i, j) ∈ (I ,J ), t ∈ T
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Constraints (4.36) and (4.37) can be relaxed using the augmented Lagrangian

strategy, proposed by Rockafellar and Wets [117], and yield the following objec-

tive function:

Minimize
Y∈Y,H,X,Z,U

1
N

N

∑
n=1

∑
t∈T

{
∑
s∈S

∑
i∈I

∑
j∈Ji

(
ψstYsijtn + ∑

m∈M
∑
b∈B

ηmbtYmbsijtn

)
+ Q(Y, n) +

∑
s∈S

∑
i∈I

∑
j∈Ji

(
∑

m∈M
∑
b∈B

ζmbsijtn(Ymbsijtn − Ȳmbsijt) +
1
2 ∑

m∈M
∑
b∈B

ϑ(Ymbsijtn

−Ȳmbsijt)
2 + βsijtn(Ysijtn − Ȳsijt) +

1
2

θ(Ysijtn − Ȳsijt)
2
)}

where {ζmbsijtn}∀m∈M,b∈B,s∈S ,i∈I ,j∈Ji,t∈T ,n∈N and {βsijtn}∀s∈S ,i∈I ,j∈Ji,t∈T ,n∈N de-

fine the Lagrangian multipliers for the relaxed constraints and ϑ and θ are the

penalty ratios. Since variables {Ymbsijtn}∀m∈M,b∈B, s∈S ,i∈I ,j∈Ji,t∈T ,n∈N, and {Ȳmbsijtn}

∀m∈M,b∈B,s∈S ,i∈I ,j∈Ji,t∈T ,n∈N are binary, quadratic term ∑s∈S ∑i∈I ∑j∈Ji ∑t∈T θ(Ysijtn−

Ȳsijt)
2 can now be reduced as follows:

∑
s∈S

∑
i∈I

∑
j∈Ji

∑
t∈T

θ(Ysijtn − Ȳsijt)
2 = ∑

s∈S
∑
i∈I

∑
j∈Ji

∑
t∈T

(
θ(Ysijtn)

2 − 2θYsijtnȲsijt + θ(Ȳsijt)
2
)

≈ ∑
s∈S

∑
i∈I

∑
j∈Ji

∑
t∈T

(
θYsijtn − 2θYsijtnȲsijt + θȲsijt

)

Similarly, we can also simplify the quadratic term ∑m∈M∑b∈B ∑s∈S ∑i∈I ∑j∈Ji

∑t∈T ϑ(Ymbsijtn − Ȳmbsijt)
2 and yield the following objective function:
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Minimize
Y,H,X,Z,U

1
N

N

∑
n=1

∑
t∈T

{
∑
s∈S

∑
i∈I

∑
j∈Ji

(
(ψst + βsijtn − θȲsijt +

θ

2
)Ysijtn + ∑

m∈M
∑
b∈B

(ηmbt

+ζmbsijtn − ϑȲmbsijt +
ϑ

2
)Ymbsijtn

)
+ Q(Y, n)− ∑

s∈S
∑
i∈I

∑
j∈J

βsijtnȲsijt +

1
2 ∑

s∈S
∑
i∈I

∑
j∈J

θȲsijt − ∑
m∈M

∑
b∈B

∑
s∈S

∑
i∈I

∑
j∈J

ζmbsijtnȲmbsijt

+
1
2 ∑

m∈M
∑
b∈B

∑
s∈S

∑
i∈I

∑
j∈J

ϑȲmbsijt

}
(4.38)

With fixed values of the overall plan {Ȳmbsijt}∀m∈M,b∈B,s∈S ,i∈I ,j∈Ji,t∈T and

{Ȳsijt}∀s∈S ,i∈I ,j∈Ji,t∈T , the last part of the objective function (4.38) becomes con-

stant. This will allow the subproblems to be separable by scenarios n ∈ N. The

revised subproblem now becomes:

[IWT-PHA(n)]Minimize
Y,H,X,Z,U

∑
s∈S

∑
i∈I

∑
j∈Ji

∑
t∈T

{
(ψst + βsijtn − θȲsijt +

θ

2
)Ysijtn + ∑

m∈M
∑
b∈B

(

ηmbt + ζmbsijtn − ϑȲmbsijt +
ϑ

2
)Ymbsijtn

}
+ Q(Y, n) (4.39)

subject to (4.12)-(4.15), (4.18), (4.23)-(4.31), (4.34), and (4.35). Let r be the cur-

rent iteration of the PH algorithm. We let {ζr
mbsijtn} and {βr

sijtn} to denote the

Lagrangian multipliers and ϑr and βr to be the penalty parameters at iteration r of

the PH algorithm. In the basic PH implementation, N deterministic subproblems

[IWT-PHA(n)] are solved and the consensus parameters

{Ȳr
mbsijt}∀m∈M,b∈B,s∈S ,i∈I ,j∈Ji,t∈T and {Ȳr

sijt}∀s∈S ,i∈I ,j∈Ji,t∈T are obtained. If the to-

tal gap between the binary variables, i.e., {Yr
mbsijtn} and {Yr

sijtn}, and the consensus

parameters. i.e., {Ȳr
mbsijt} and {Ȳr

sijt}, falls below a threshold limit, the algorithm
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terminates; otherwise, we update the values of {ζr
mbsijtn}, {β

r
sijtn}, ϑr, and θr using

equations (4.40)-(4.43) and the process continues.

ζr
mbsijtn ←− ζr−1

mbsijtn + ϑr−1(Yr
mbsijtn − Ȳr−1

mbsijt)

∀m ∈ M, b ∈ B, s ∈ S , i ∈ I , j ∈ Ji, t ∈ T (4.40)

ϑr ←− ∆ϑr−1 (4.41)

βr
sijtn ←− βr−1

sijtn + θr−1(Yr
sijtn − Ȳr

sijt)∀s ∈ S , (i, j) ∈ (I ,J ), t ∈ T (4.42)

θr ←− ∆θr−1 (4.43)

In the first iteration, the values of {ζr=0
mbsijtn} and {βr=0

sijtn} are set to zero for each

scenario n ∈ N. Penalty parameters {ϑr=0} and {θr=0} are initialized with a fixed

positive number which eventually turns into {ϑr, θr} → ∞ with the progression

of the PH algorithm. The constant parameter ∆ is set to a value grater than 1 i.e.,

∆ > 1. A pseudo-code of the basic Progressive hedging algorithm is provided in

Algorithm 1.

Termination criteria: The PH algorithm terminates upon satisfying one of the fol-

lowing conditions:

• 1
N ∑n∈N ∑s∈S ∑i∈I ∑t∈T ∑j∈Ji

(
∑m∈M∑b∈B |Yr

mbsitn− Ȳr−1
mbsit|+ |Y

r
sijtn− Ȳr−1

sijt |)
≤ ε; where ε is a pre-specified tolerance gap.

• 10 consecutive non-improvement iterations.

• Maximum iteration limit is reached (i.e., itermax = 500)

• Maximum time limit is reached (i.e., tmax = 10, 800 CPU seconds)
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4.4.3 Enhanced Progressive Hedging Algorithm
4.4.3.1 Penalty Parameter Updating

The performance of the basic PH algorithm is highly sensitive to the values set

for the penalty parameters ϑr and θr. Prior studies, such as [22, 60], show that

if conservative values are set for the penalty parameters, then the algorithm con-

verges to a near optimal solution, but with an expense of high computational time.

On the contrary, if the values of ϑr and θr are set too high, then the algorithm

quickly converges to a suboptimal solution. To overcome this problem, we uti-

lize the dynamic penalty parameter adjustment approach proposed by Hvattum and

Lokketangen [61]. This approach dynamically adjusts the penalty parameters ϑr

and θr based on the computational performances of the PH algorithm from prior

iterations. Let ∆r
1, ∆r

3 and ∆r
2, ∆r

4 be the indicators of the convergence rates in the

dual and primal space, respectively. The penalty parameters ϑr and θr are now dy-

namically updated as follows:

∆r
1 = ∑

m∈M
∑
b∈B

∑
s∈S

∑
(i,j)∈(I ,J )

∑
t∈T

∑
n∈N

(Yr
mbsijtn − Ȳr

mbsijt)
2

∆r
2 = ∑

m∈M
∑
b∈B

∑
s∈S

∑
(i,j)∈(I ,J )

∑
t∈T

(Ȳr
mbsijt − Ȳr−1

mbsijt)
2

∆r
3 = ∑

s∈S
∑

(i,j)∈(I ,J )
∑
t∈T

∑
n∈N

(Yr
sijtn − Ȳr

sijt)
2

∆r
4 = ∑

s∈S
∑

(i,j)∈(I ,J )
∑
t∈T

(Ȳr
sijt − Ȳr−1

sijt )
2
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ϑr =


Γϑr−1 if ∆r

1 − ∆r−1
1 > 0

1
Γ ϑr−1 else if ∆r

2 − ∆r−1
2 > 0

ϑr−1 Otherwise

; θr =


Γθr−1 if ∆r

3 − ∆r−1
3 > 0

1
Γ θr−1 else if ∆r

4 − ∆r−1
4 > 0

θr−1 Otherwise

where Γ is a constant parameter whose value is set to Γ > 1.

4.4.3.2 Global and Local Heuristic Strategies

We adopt two heuristic strategies, global and local heuristics as proposed by Crainic

et al. [26], to further accelerate the convergence of the basic PH algorithm. The un-

derlying concept of these strategies are to modify the barge loading/unloading

cost ηmbt and towboat usage cost ψst in such a way that help to guide fixing few

decision variables and eventually accelerates the convergence of the basic PH algo-

rithm. The first strategy is referred to as global heuristic since this strategy updates

ηmbt and ψst at the end of each PHA iteration r. On the other hand, in local heuristic,

cost parameters ηmbt and ψst are adjusted within the scenario level.

As discussed in section 4.4.2, problem [IWT-PHA(n)] consists of N determinis-

tic sub-problems. Following Algorithm 1, we collect consensus parameters {Ȳr
mbsijt}

∀m∈M,b∈B,s∈S ,i∈I ,t∈T and {Ȳr
sijt}∀s∈S ,i∈I ,j∈Ji,t∈T at the end of each iteration r. The

higher value of {Ȳr
mbsijt} signifies that barge b ∈ B is used with towboat s ∈ S

to transport commodity m ∈ M between origin-destination pair (i, j) ∈ (I ,J ) at

time period t ∈ T in most of the previous iterations. In contrary, a lower value of

{Ȳr
mbsijt} indicates that this decision was not a favorable selection in most of the

previous iterations. Similar conclusion can be made for {Ȳr
sijt} as well. Let ā and a

be two parameters indicating the upper and lower threshold values for {Ȳr
mbsijt}.
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If {Ȳr
mbsijt} yields the value greater than ā, then decreasing the value of ηmbt will

motivate the sub-problems to select more barges in the following iterations. Simi-

larly, two other thresholds b̄ and b can be defined as the upper and lower limit for

{Ȳr
sijt} and same decision strategy can be applied for this consensus parameter as

well. These cost adjustment strategies will help to fix the decision of using barges

and towboats to either one or zero which will eventually help to reduce the size of

the overall problem. The adjustment strategy is given below:

ηr
mbt =


κηr−1

mbt i f Ȳr−1
mbsijt < ā

1
κ ηr−1

mbt i f Ȳr−1
mbsijt > a

ηr−1
mbt Otherwise

; ψr
st =


κψr−1

st i f Ȳr−1
sijt < b̄

1
κ ψr−1

st i f Ȳr−1
sijt > b

ψr−1
st Otherwise

where ηr
mbt denotes the modified cost of loading and unloading barge b ∈ B with

commodity m ∈ M in time period t ∈ T and ψr
st to be the modified cost of using

towboat s ∈ S in time period t ∈ T in the r-th of the PH iteration. The values

of ā, a, b̄, and b are set to be any values form the range 0.7 < (ā, b̄) < 1 and

0 < (a, b) < 0.3. Finally, the constant parameter κ is set to be any value greater

than 1.0.

The performance of the global heuristic strategy can be further improved by

modifying the fixed cost of using barges and towboats locally within the scenario

level. The modification of the fixed costs only impact the sub-problem at scenario

n of a particular iteration r; therefore, this strategy is referred to as local heuris-

tic [26]. Following this strategy, if the gap between the binary variables and the

corresponding consensus parameters, i.e., |Yr−1
mbsijtn − Ȳr

mbsit| and |Yr−1
sijtn − Ȳr

sijt|, are
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sufficiently large for any scenario n ∈ N of a particular iteration, then the fixed

cost of using barges and towboats are adjusted. The local adjustment strategy is

presented below:

ηr
mbtn =


κηr−1

mbtn i f |Yr−1
mbsijtn − Ȳr

mbsijt| ≥ a f ar and Yr−1
mbsijtn = 0

1
κ ηr−1

mbtn i f |Yr−1
mbsijtn − Ȳr

mbsijt| ≥ a f ar and Yr−1
mbsijtn = 1

ηr−1
mbtn Otherwise

ψr
stn =


κψr−1

stn i f |Yr−1
sijtn − Ȳr

sijt| ≥ b f ar and Yr−1
sijtn = 0

1
κ ψr−1

stn i f |Yr−1
sijtn − Ȳr

sijt| ≥ b f ar and Yr−1
sijtn = 1

ψr−1
stn Otherwise

where ηr
mbtn and ψr

stn represent, respectively, the adjusted fixed cost associated

with using barges and towboats under scenario n ∈ N in the r-th iteration of the

PH algorithm; κ is a constant parameter whose value is set to κ > 1; a f ar and b f ar

are threshold values at which local adjustment to the ηr
mbtn and ψr

stn are made and

are, respectively, set in the following range: 0.5 < a f ar < 1 and 0.5 < b f ar < 1.

4.4.3.3 Scenario Bundling

The performance of the PH algorithm can be improved even further by grouping

the scenarios and then solve [IWT-PHA(n)] for each scenario group, commonly

referred to as scenario bundling/grouping technique [1]. Following this technique,

instead of solving PH subproblems for each individual scenario, a set of bundles

are created from the scenarios, and the PH subproblems are then solved for each

scenario bundle l ∈ L. Scenario bundling can be done in many ways which would
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be more specific to the model (e.g., grouping/bundling high, medium, and low

supply/water level scenarios). Let us partition set N into |L| bundles where the

probability of each bundle, denoted by ρl, will be ρl = ∑n∈l ρn. Problem [IWT-

PHA(n)] is now solved for each bundle l ∈ L as follows:

[[IWT-PHA(l)]Minimize
Y,H,X,Z,U

{
∑
s∈S

∑
i∈I

∑
j∈Ji

∑
t∈T

(
(ψst + βsijtl − θȲsijt +

θ

2
)Ysijtl +

∑
m∈M

∑
b∈B

(ηmbt + ζmbsijtl − ϑȲmbsijt +
ϑ

2
)Ymbsijtl

}
+ ∑

n∈l

ρn

Pl

(
Q(Y, n)

)
(4.44)

subject to (4.12)-(4.15), (4.18), (4.23)-(4.31), (4.34), and (4.35). Note that the def-

initions for {Ymbsijtl} and {Ysijtl} will remain same as [IWT(PHA)] but for each

scenario bundle l ∈ L.

4.4.4 Nested Decomposition Algorithm

Even though the computational burden in solving problem [IWT-PHA(n)] now

reduced significantly, the problem can still be considered challenging depending

upon the size of |I|, |J |, |M|, |B|, |S|, and |T |. To address this challenge, we

employ another decomposition technique, commonly referred to as nested decom-

position (ND) algorithm [70], to further reduce the problem size for [IWT-PHA(n)].

This algorithm utilizes the concept of Stochastic Dual Dynamic Integer Program-

ming (SDDiP), which is commonly used to solve multi-stage stochastic integer

programming problems with binary state variables, and are capable of converg-

ing in a finite number of iterations [158].

Recall that problem [IWT-PHA(n)] includes constraints (4.13) and (4.14) which

connect inventory storage decisions between multiple time periods. These linking
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constraints restrict problem [IWT-PHA(n)] to be decomposable by time period t ∈

T , which otherwise would significantly reduce the size of the overall problem. To

overcome this problem, we introduce duplicating variables Hprev
1 := {Hprev

mitn|∀m ∈

M, i ∈ I , t ∈ T , n ∈ N} and Hprev
2 := {Hprev

mjtn|m ∈ M, j ∈ J , t ∈ T , n ∈ N} for

each linking variables {Hmi,t−1,n} and {Hmj,t−1,n} and replace constraints (4.13)

and (4.14) by the following set of constraints:

Zmitn + (1− αm)Hprev
mitn = ∑

b∈B
∑
s∈S

∑
j∈Ji

Xmbsijtn + Hmitn

∀m ∈ M, i ∈ I , t ∈ T , t > 1 (4.45)

∑
b∈B

∑
s∈S

∑
i∈Ij

Xmbsijtn + (1− αm)Hprev
mjtn = dmjt + Hmjtn

∀m ∈ M, j ∈ J , t ∈ T , t > 1 (4.46)

Hprev
mitn = Ĥmi,t−1,n ← µmitn ∈ R|M|+|I|+|T |−1 ∀m ∈ M, i ∈ I , t ∈ T , t > 1 (4.47)

Hprev
mjtn = Ĥmj,t−1,n← µmjtn ∈ R|M|+|J |+|T |−1 ∀m ∈ M, j ∈ J , t ∈ T , t > 1(4.48)

Hprev
mitn, Hprev

mjtn ∈ R+ (4.49)

where {Hprev
mitn}∀m∈M,i∈I ⋃J ,n∈N is a duplicating variable representing {Hmi,t−1,n}

∀m∈M,i∈I ⋃J ,n∈N and {Ĥmi,t−1,n}∀m∈M,i∈I ⋃J ,n∈N is the solution for {Hmitn}∀m∈M,

i∈I ⋃J ,n∈N at time period t− 1, which is fixed when solving for time period t and

{µmitn}∀m∈M,i∈I ⋃J ,t∈T ,n∈N are Lagrangian multipliers which are unrestricted in
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sign. With this, problem [IWT-PHA(n)] can now be decomposable by time period

t ∈ T which is shown below:

[IWT-ND(n,t)] Minimize
Y,H,X,Z,U

Ot := ∑
s∈S

∑
i∈I

∑
j∈Ji

{
(ψst + βsijtn − θȲsijt +

θ

2
)Ysijtn +

∑
m∈M

∑
b∈B

(ηmbt + ζmbsijtn − ϑȲmbsijt +
ϑ

2
)Ymbsijtn

}
+ Q(Y, t, n) + κt(4.50)

subject to constraints (4.12), (4.15), (4.23)-(4.35), (4.45)-(4.49), and

κt ≥ Ôt+1,q + ∑
m∈M

∑
i∈I

µmi,t+1,nq(Ĥmitnq − Hmitn) + ∑
m∈M

∑
j∈J

µmj,t+1,nq(Ĥmjtnq −

Hmjtn)∀q (4.51)

where κt defines a cost to go function. In each iteration q of the ND algorithm,

problem (4.50) needs to be solved separately and sequentially for each time pe-

riod t ∈ T , and the future cost cuts (4.51) are added in [IWT-ND(n,t)] from the

following iterations q + 1. Essentially, problem [IWT-ND(n,t)] is solved through

successive forward and backward pass in each iteration q of the ND algorithm. The

forward pass yields a feasible upper bound, denoted by UBq, while the backward

pass, which generates cuts from the relaxed subproblems, provides a valid lower

bound for the original problem [IWT-PHA(n)]. The process is continued till the

gap between the upper and lower bound falls below a pre-specified tolerance level

εND. Figure 4.2 delineates the steps involved in solving [IWT-PHA(n)] using the

ND algorithm.

Forward Pass: The purpose of the forward pass is to generate a valid upper bound,

UBq, for the full problem. In this step, the optimization model is solved sequen-
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tially for each consecutive time period by using the solution obtained from the

previous time period. The upper bound UBq is calculated as follows:

UBq = ∑
t∈T

(Ôtq − k̂t) ∀q (4.52)

It is obvious from (4.52) that the sum of the optimal solutions of the forward pass

subproblems in any iteration q, Ôtq, minus the cost-to-go approximations, k̂t, for

all time periods of that iteration q provides a valid upper bound for the full prob-

lem [IWT-PHA(n)].

Backward Pass: After solving all the forward subproblems for each time period

t ∈ T , the process of solving [IWT-PHA(n)] using the backward pass initiates. Back-

ward pass solves the subproblems in descending order of the time periods and

generates cuts from the solutions of the future periods. These are cumulative cuts

but specific to each time period t ∈ T . This means that the cuts are added in

each iteration q, whenever a new backward pass subproblem for each time period

t is solved and are then kept in the following forward passes. These cuts provide

approximations to predict the cost-to-go functions within the planning horizon.

Cuts, added in the backward pass of each iteration q, are still kept in the forward

pass until the gap between the upper and lower bound reaches to a pre-specified

tolerance level εND. The fixed variables stored in the forward pass, Ĥmi,t,nq and

Ĥmj,t,nq, are also used in the backward pass. The lower bound, LBq, is then calcu-

lated as follows:

LBq = Ô1,q ∀q (4.53)
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Here, the solution of the first time period (i.e., t=1) provides a valid lower

bound to the total cost since it contains only a subset of the constraints from the

original problem [IWT-PHA(n)].

Figure 4.2

Nested decomposition algorithm

4.4.4.1 Valid Inequalities:

To enhance the performance of the ND algorithm, we first derive a number of valid

inequalities by utilizing the special structure of our problem [IWT] and then added

to problem [IWT-ND(n,t)]. The proposed set of valid inequalities are presented

below:
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• Constraint (4.54) provides a lower bound on the overall barge usage to en-
sure the demand satisfaction for commodity m ∈ M at each time period
t ∈ T . These constraints are known to be as surrogate constraints. The value
of σ can vary between 0.0 and 1.0. When σ = 1.0, all the demand are required
to be satisfied through the inland waterway port network.

∑
b∈B

∑
s∈S

∑
i∈I

∑
j∈J

Ymbsijtwb ≥ ∑
j∈J

σdmjt ∀m ∈ M, t ∈ T (4.54)

• While choosing between a number of barges of similar capacities, symme-
tries may occur which may elongate the search time for the solver. To ad-
dress this issue, we add the following lexicographic ordering constraints (4.55)
and (4.56) which set priorities on the barge selection. Such priorities help
to break the duplications caused by the barge selection symmetry, which
thereby accelerate the performance of the branch-and-bound process.

Y1,b−1,sijt ≥ Y1bsijt∀b ∈ B \ {1}, s ∈ S , i ∈ I , j ∈ J , t ∈ T (4.55)

m

∑
p=1

2(m−p)Yp,b−1,sijt ≥
m

∑
p=1

2(m−p)Ypbsijt∀m ∈ M, b ∈ B \ {1},

s ∈ S , i ∈ I , j ∈ J , t ∈ T (4.56)

• Symmetries may also arise in the case of towboat selection. Consider S ′e
as the subset of towboats of same type, i.e., S ′e ⊂ S and s′e ⊂ S ′e where s′e
represents a set of the members belonging to S ′e in ascending order. Similar to
constraints (4.55) and (4.56), following lexicographical ordering constraints
(4.57) and (4.58) are applied for each S to set the priority in utilizing towboats
of the same type.

Ys′e−1,ijt ≥ Ys′e,ijt∀s′e ∈ S ′e \ {1}, i ∈ I , j ∈ J , t ∈ T (4.57)

ψs′e−1,tYs′e−1,ijt ≥ ψs′e,tYs′e,ijt∀s′e ∈ S ′e \ {1}, i ∈ I , j ∈ J , t ∈ T (4.58)

• Constraints (4.59) generate a lower bound on the number of barges that are
required for satisfying the demand at any time period t ∈ T \ {1}. If the
cumulative demand over period t is greater than or equal to minimum of the
maximum possible inventory held (hj) and initial inventory Hprev

mjt , then at
least a certain number of barges need to be used in that specific time period
t.
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∑
b∈B

∑
s∈S

∑
i∈I

∑
j∈J

Ymbsijt ≥
⌈

∑j∈J σdmjt −min{∑j∈J Hprev
mjt , ∑j∈J hj}

wb

⌉
∀m ∈ M, t ∈ T \ {1} (4.59)

4.4.4.2 Benders cut:

Standard ND algorithm is designed to solve convex optimization problems for

which different cuts, such as Benders cuts, can be generated in a much simplified

way, i.e., using the objective value and the Lagrange multiplier of the constraints

(4.47) and (4.48), which provides better convergence. Since we are applying the

ND algorithm for solving non-convex, MILP problems, Benders cuts cannot be

applied directly. Therefore, to generate a valid Benders cut, the subproblems need

to be convexified or relaxed appropriately. Let ÔLP
t,q be the objective of the relaxed

subproblem at time period t ∈ T . Benders cuts can now be generated as follows:

kt−1 ≥ ÔLP
t,q + ∑

m∈M
∑
i∈I

µLP
mi,t,nq(Ĥmi,t−1,nq − Hmi,t−1,n)

+ ∑
m∈M

∑
j∈J

µLP
mj,t,nq(Ĥmj,t−1,nq − Hmj,t−1,n) ∀q (4.60)

Note that Benders cut is the weakest of the possible cuts; however, it has the ad-

vantage of being easily and quickly computed. It works well for the tighter for-

mulation when the solution of the linear relaxation is close to the actual solution

of the MILP.

4.4.4.3 Lagrangian cut:

The performance of the ND algorithm can also be enhanced by adding Lagrangian

cuts. These cuts are generated by obtaining Lagrangian relaxation of [IWT-ND(n,t)]
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which yields the convex hull of the noncomplicating constraints. First, we dual-

ize the linking constraints (4.47) and (4.48) and then penalize their violation in the

objective function by the vector of Lagrange multipliers, {µmitnq} and {µmjtnq}, re-

spectively. These Lagrangian multipliers are unrestricted in sign. The following

relaxed subproblem is then obtained:

Minimize
Y,H,X,Z,U

OLR
tq := ∑

s∈S
∑
i∈I

∑
j∈Ji

{
(ψst + βsijtn − θȲsijt +

θ

2
)Ysijtn + ∑

m∈M
∑
b∈B

(ηmbt +

ζmbsijtn − ϑȲmbsijt +
ϑ

2
)Ymbsijtn

}
+ Q(Y, t, n) + κt − ∑

m∈M

{
∑
i∈I

µmitnq(

Hprev
mitn − Ĥmi,t−1,n) + ∑

j∈J
µmjtnq(Hprev

mjtn − Ĥmj,t−1,n)

}
(4.61)

subject to constraints (4.12), (4.15), (4.23)-(4.31), (4.34), (4.35), (4.45)-(4.46), (4.49),

and (4.51).

With Lagrange multiplier values closer to their optimal, tighter approximation is

obtained and stronger cuts are generated. The optimal values of the Lagrange

multipliers, {µmitnq} and {µmjtnq}, can be obtained by solving the following sub-

problem:

Maximize
µmitnq,µmjtnq

OLD
tq =

{
Minimize
Y,H,X,Z,U

OLR
tq = ∑

s∈S
∑
i∈I

∑
j∈Ji

{
(ψst + βsijtn − θȲsijt +

θ

2
)Ysijtn +

∑
m∈M

∑
b∈B

(ηmbt + ζmbsijtn − ϑȲmbsijt +
ϑ

2
)Ymbsijtn

}
+ Q(Y, t, n) + κt − ∑

m∈M{
∑
i∈I

µmitnq(Hprev
mitn − Ĥmi,t−1,n) + ∑

j∈J
µmjtnq(Hprev

mjtn − Ĥmj,t−1,n)

}}
(4.62)
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subject to constraints (4.12), (4.15), (4.23)-(4.31), (4.34), (4.35), (4.45)-(4.46), (4.49),

and (4.51).

The coefficients obtained through solving the maximization problem (4.62), are

used to generate Lagrangian cut (4.63) for any fixed time period t ∈ T .

kt−1 ≥ ÔLD
tq + ∑

m∈M
∑
i∈I

µLD
mitnq(Ĥmi,t−1,nq − Hmi,t−1,n)

+ ∑
m∈M

∑
j∈J

µLD
mjtnq(Ĥmj,t−1,nq − Hmj,t−1,n) ∀q (4.63)

The maximization problem in (4.62) can, however, be computationally expen-

sive. Therefore, we adapt the Lagrange multipliers for each of the sub-problems

of the Backward Pass using the sub-gradient method. The Backward Pass steps

under the ND algorithm with the application of Lagrangean cuts are listed below.

For time period t = T, ..., 1 in iteration q:

Step 1. Solve the original MILP subproblem in (4.50) to get the actual objective value,
Otq.

Step 2. Solve the LP relaxation of the MILP subproblem and store the dual variables,
{µLP

mitnq} and {µLP
mjtnq}.

Step 3. Use the dual variables from the LP relaxation as an initial guess for the La-
grange multipliers.

Step 4. Solve the Lagrangean subproblem (4.61) to obtain the optimal value OLR
tq .

Step 5. Check the following stopping criterion, where ε2 and ε3 are pre-specified
tolerances:

(a) If (Otq −OLR
tq ) ≤ ε2; store the optimal OLR

tq and multipliers {µLP
mitnq} and

{µLP
mjtnq} and go to the next subproblem, t− 1, by adding the appropriate

future cost cuts.
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(b) If no significant progress can be achieved after re-solving the Lagrangean
relaxation in a successive number of iterations, i.e., if |OLR,old

tq −OLR
tq | ≤

ε3 where OLR,old
tq is the solution of the Lagrangean Relaxation in the pre-

vious step of the subgradient method, no further effort should be made
to decrease the duality gap of this subproblem in this iteration. Store
the optimal OLR

tq and multipliers {µLP
mitnq} and {µLP

mjtnq} and go to the
next subproblem, t− 1, by adding the appropriate future cost cuts.

Step 6. If the stopping criteria are not met, update the set of multipliers using the
subgradient method and go back to Step 3.

µLP
mitnq = µLP

mitnq + steptq(Ĥmi,t−1,n − Hprev
mitn)

µLP
mjtnq = µLP

mjtnq + steptq(Ĥmj,t−1,n − Hprev
mjtn)

where steptq =
Otq−OLR

tq

∑m∈M[∑i∈I (Ĥmi,t−1,n−Hprev
mitn)

2+∑j∈J (Ĥmj,t−1,n−Hprev
mjtn)

2]

4.4.4.4 Strengthened Benders cut:

As discussed earlier, depending on the structure and tightness of the MILP prob-

lem, Benders cut can be weak and may require large number of iterations to con-

verge. Generating Lagrangean cuts , on the other hand, requires longer compu-

tational time. To mitigate this challenge, Zou et al. [158] propose another set of

cuts, known as strengthened Benders cut, which is a compromise between Benders

and Lagrangean cuts and does not suffer from potential performance issues of

the two previous cuts. Generation of strengthened Benders cut is similar to the

Lagrangean cut. However, it does not use the subgradient method to adjust the

corresponding multipliers. This cut uses the coefficients obtained from solving the

first Lagrangean relaxation after the initialization of the multipliers using LP relax-

201



www.manaraa.com

ation shown in (4.64). The strengthened benders cut for problem (4.50) is shown

below:

kt−1 ≥ ÔLR
tq + ∑

m∈M
∑
i∈I

µLP
mitnq(Ĥmi,t−1,nq − Hmi,t−1,n) + ∑

m∈M
∑
j∈J

µLP
mjtnq(Ĥmj,t−1,nq

−Hmj,t−1,n) ∀q (4.64)

These cuts are at least as tight as the Benders cut and usually can be generated in

less time compared to Lagrangean cuts [158].

4.4.5 Implementing Parallel Processing:

The proposed hybrid decomposition algorithm developed in this study utilizes the

SAA, the enhanced PH, and the ND algorithm in a nested structure. In addition

to this noble algorithmic framework, we develop two different variants of paral-

lelization schemes by utilizing the parallel computing concept. These schemes are

developed with a view to further enhance the overall performance of the nested

decomposition algorithm. The main difference between the conventional algo-

rithm and the parallelized algorithms is that conventional algorithms solve the re-

spective subproblems in series, whereas our proposed parallelization frameworks

are designed to solve the subproblems of our nested hybrid decomposition al-

gorithm in parallel. Essentially, the parallelization is conducted via utilizing the

computers multiprocessing capabilities. Our proposed parallelization schemes are

detailed below.

(i) Scheme 1: The first parallelization scheme applies synchronous paralleliza-
tion technique under the SAA algorithm. Note that in each iteration of the
SAA, |E| replications of problem [IWT(SAA)] are generated. Parallelization
Scheme 1 assigns each of these replications to different available processors
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and solves the subproblems in parallel by utilizing the enhanced PH algo-
rithm which is also hybridized with the ND algorithm. After all the repli-
cations are solved, the solutions are aggregated and the convergence of the
SAA algorithm is evaluated. If the obtained gap is lower than the predefined
threshold limit, then the SAA algorithm is terminated; otherwise, more SAA
replications are generated and the process continues until the SAA is con-
verged to a desired optimality gap. The flow chart for this parallelization
scheme can be seen in Figure 4.3.

(ii) Scheme 2: The second parallelization scheme applies synchronous paral-
lelization technique under the PH algorithm introduced in section 4.4.2. In
each PH iteration r, the algorithm solves a series of scenario-based subprob-
lems [IWT-PHA(n)]. Utilizing this scheme, each of these scenario-based sub-
problems are dynamically assigned to different available processors which
are finally collected and aggregated upon solution. These aggregated solu-
tions are then utilized to check the convergence of the PH algorithm. If the
algorithm converges, the corresponding first-stage solutions are then fixed
and evaluated under a large sample space in SAA to obtain the upper bound
for the overall problem.The process continues until the SAA algorithm pro-
vides a solution of the desired quality. The flow chart for this parallelization
scheme can be seen in Figure 4.4.

4.5 Experimental Results

This section presents a real-life case study and the computational performance in

solving model [IWT] using the proposed nested decomposition algorithm. We use

the inland waterway ports located in four southeast U.S. states, namely, Arkansas

(AR), Louisiana (LA), Mississippi (MS), and Tennessee (TN) as a testing ground to

visualize and validate the modeling results. A number of managerial insights are

drawn that casts valuable insights on designing a robust inland waterway

transportation network. The model and all the solution approaches are coded in

python 2.7 on a desktop with Intel Core i7 3.6 GHz processor and 32.0 GB RAM.

Optimization solver Gurobi Optimizer 6.52 is used throughout the solution pro-

2Available from: http://www.gurobi.com/
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Figure 4.3

Parallelization scheme I
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Figure 4.4

Parallelization scheme II
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cess. Following subsections provides a brief description of the network used in

this study, reports the computational performance of the proposed solution algo-

rithms, and summarizes the managerial insights obtained from the case study.

4.5.1 Data Description

This study considers a total of 13 inland waterway ports which are located along-

side Mississippi River. Among selected ports, the Port of Rosedale, Port of Greenville,

Port of Vicksburg, Port of Natchez, and Port of Yazoo County are located in Missis-

sippi; the Port of Geismar Louisiana, Port of Greater Baton Rouge, Port of South

Louisiana, and Port of Gramercy are located in Louisiana; Port of Little Rock is

located in Arkansas; and the Port of Memphis, Pemiscot County Port, and New

Madrid County Port are located in Tennessee state. The geographical location of

these selected ports can be visualized in Figure 4.5. All these ports are connected

with each other via the Mississippi River. The Port of Claiborne County is op-

erationally unavialble; therefore, we exclude this port from consideration in our

study [85]. Additionally, in this study we consider four commodities, rice, corn,

woodchips, and fertilizer, to be transported from the origin ports to the destina-

tion ports. In next few subsections we added the detailed information about the

supply and demand distribution, transportation cost, and water level fluctuation

pertaining to this test region.

4.5.1.1 Supply and demand data:

In this study we consider four commodities, rice, corn, woodchips, and fertilizer,

to be transported from the origin ports to the destination ports. The suppliers of
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Figure 4.5

Inland waterway port locations along the Mississippi River
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these commodities are selected in such a way that they locate within a radius of 60

miles from any of the selected ports. The supply availability information for each

port, ϕmitω, are then aggregated by considering the minimum distance between

suppliers to all origin ports. The supply availability of the selected products (in

1,000 tons) can be seen in Figure 4.6. Each year the test region produces 6.3 and

113.8 million tons of rice and corn from 42 and 59 different counties, respectively

[135]. On the other hand, the woodchips and fertilizer have an yearly availability

of 8.3 and 0.4 million tons which are supplied from 31 and 22 different counties

to ports, respectively [136, 137]. Note that the supply of the selected products, ex-

cept fertilizer, are highly seasonal in nature. Rice becomes available only between

August and October of each year whereas corn is harvested only between mid-

July to early December of each year [133]. Likewise, woodchips remain available

year-round except three months during the winter (December to February) [133].

This study considers five ports along the Mississippi River which can be used

as destination ports to satisfy the demand of 43 industries located nearby the ports.

The yearly demand distribution of these ports are shown in Figure 4.7. The annual

demand of rice, corn, woodchips, and fertilizers in our testing region are 3.8, 68.3,

8.3, and 0.37 million tons, respectively [135, 137].

4.5.1.2 Transportation cost:

The towboats used in the Mississippi River are capable of carrying up to 15 barges

[138]; therefore, we set δs = 15. The fixed cost of using a towboat (ψst) is set to

be as $244.38 [138]. The unit commodity transportation cost (cmbsijt) between each
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(a) Rice (b) Corn

(c) Woodchips (d) Fertilizer

Figure 4.6

Supply availability for (a) rice, (b) corn, (c) fertilizer, and (d) woodchips in the

test region (in 1,000 tons)
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(a) Rice (b) Corn

(c) Woodchips (d) Fertilizer

Figure 4.7

Demand of (a) rice, (b) corn, (c) fertilizer, and (d) woodchips in the test region

(in 1,000 tons)
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source-destination pair is set to be as $0.017 /mile/ton [48]. All costs are adjusted

based on the 2019 dollars value.

4.5.1.3 Water level fluctuations:

The Mississippi River experiences significant water level fluctuations in different

time period of the year. A demonstration of water level fluctuations between the

Port of Rosedale and Port of Greenville from July, 2016 to June, 2017 is provided

in Figure 4.8 [139]. Each point on Figure 4.8 indicates the water stage of the Mis-

sissippi River on a weekly basis. It can be observed from the figure that the water

level drops between mid-August till the end of December while reaches to the

maximum during the first three weeks in October. Other than these specific time

periods, the water stage generally remains stable for the rest of the year (above

14.2 feet), except in May when the level reaches to 42 feet, which is higher than the

flood level.

4.5.2 Performance Evaluation of the Algorithms

This subsection presents our computational experiences in solving model [IWT]

using the algorithms presented in Section 2.4. To test the performance of the so-

lution algorithms, we first vary |I|, |J |, |M|,|S|, and |T | to generate 9 different

problem instances. The description of these instances are summarized in Table 4.1.

We use the following criteria to terminate the algorithms: (i) the optimality gap

(i.e., ε = |UB − LB|/UB) falls below a threshold value (e.g., ε = 1.0%); (ii) the
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Figure 4.8

Demonstration of water level fluctuations between Port of Rosedale and Port of

Greenville from July, 2016 to June, 2017 [139]

maximum time limit (tmax) is reached (e.g., tmax = 10, 800 CPU seconds); or (iii)

the maximum iteration limit (qmax) is reached (e.g., qmax = 100). To help the read-

ers follow our solution approaches, the following notations are used to represent

each particular variants of the proposed algorithms.

• PHA: Progressive Hedging Algorithm.

• PHA+HR: Enhanced Progressive Hedging Algorithm with application of
Heuristics strategies discussed in Section 4.4.3.2.

• PHA+HR+SB:Enhanced Progressive Hedging Algorithm with application
of both Heuristics strategies and Scenario Bundling techniques discussed in
Sections 4.4.3.2 and 4.4.3.3.

• HD: Hybrid decomposition algorithm combining Sample Average Approxi-
mation and Enhanced Progressive Hedging Algorithm (PHA+HR).

• HND-I: Hybrid decomposition algorithm combining Sample Average Ap-
proximation, Enhanced Progressive Hedging Algorithm (PHA+HR), and ba-
sic Nested Decomposition algorithm.
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• HND-II: Hybrid decomposition algorithm combining Sample Average Ap-
proximation, Enhanced Progressive Hedging Algorithm (PHA+HR), and En-
hanced Nested Decomposition algorithm with enhancements discussed in
Sections 4.4.4.1- 4.4.4.2.

• HND-III: Hybrid decomposition algorithm combining Sample Average Ap-
proximation, Enhanced Progressive Hedging Algorithm (PHA+HR), and En-
hanced Nested Decomposition algorithm with enhancements discussed in
Sections 4.4.4.1– 4.4.4.3.

• HND-IV: Hybrid decomposition algorithm combining Sample Average Ap-
proximation, Enhanced Progressive Hedging Algorithm (PHA+HR), and En-
hanced Nested Decomposition algorithm with enhancements discussed in
Sections 4.4.4.1– 4.4.4.4.

• PS-I: Parallelization scheme I discussed in Section 4.4.5.

• PS-II: Parallelization scheme II discussed in Section 4.4.5.

• HND-IV + PS-I: Parallelization scheme I is applied over hybrid algorithm
HND-IV.

• HND-IV + PS-II: Parallelization scheme II is applied over hybrid algorithm
HND-IV.

The first two sets of experiments investigate the computational performance

between Gurobi and different variants of the Progressive Hedging algorithm in

solving model [IWT] under scenario sizes N = 20 and 30. The computational re-

sults obtained from this set of experiments are summarized in Table 4.2 and 4.3.

Note that while reporting the computational results in Tables 4.2 and 4.3 and all

the following tables, the algorithm that solves a particular instance within the pre-

specified optimality gap and in the smallest running time is highlighted. However,

if such a quality solution cannot be obtained within the predefined time or itera-

tion limit, we highlight the algorithm with the smallest optimality gap. The key

observations obtained from these two tables are summarized below.
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• Results in Table 4.2 indicate that Gurobi is only able to solve the first two out
of 9 problem instances by obeying the pre-specified termination criteria. In
Instance 4, Gurobi ends with a large optimality gap within the time limit. For
the remaining instances (instances 3, 5-9), Gurobi fails to provide a feasible
solution within the time limit. With the PHA, only instances 1 and 4 are now
solvable by obeying the pre-specified termination criteria. However, it is re-
alized that the PHA is capable of providing high quality feasible solutions
(on average 2.54%) within the time limit for most of the problem instances
except instances 6 and 9. The performance of the PHA slightly improves with
the incorporation of both global and local heuristics (PHA+HR) and scenario
bundling techniques (PHA+HR+SB). Among all variants of the PHA, algo-
rithm PHA+HR+SB provides the lower optimality gap (on average 1.17%)
with an average running time of 9,292 CPU seconds.

• Table 4.3 shows the results for Gurobi and different variants of the PHA in
solving model [IWT] with N =30 scenarios. Gurobi, in this specific case, ex-
periences even more difficulties in solving the selected instances. Gurobi is
now able to solve only 1 instance, compared to 2 in N =20, by obeying the
pre-specified termination criteria. With the PHA, high quality feasible solu-
tions can be obtained in a number of instances (6/9 instances). Even though
no additional instances can be solved within the time limit, the enhanced
variant of the PHA, namely, PHA+HR and PHA+HR+SB approaches, are
capable of marginally dropping the optimality gap and running time over
PHA. In overall, algorithm PHA+HR+SB demonstrates the superior com-
putational performance (with respect to both optimality gap and running
time) over other techniques investigated in Table 4.3 in solving model [IWT]
and within our tested instances.The next set of experiments tests the computational performance of the pro-

posed hybrid algorithms (HD, HND-I, HND-II, HND-III, and HND-IV) that are

generated through different combinations of SAA, PHA, and ND algorithms along

with their various enhancement techniques. To run the experiments, we set N =

20 and N′ = 200. Table 4.4 summarizes the computational performance of these

hybrid algorithms with Gurobi. Results in Table 4.4 clearly shows that all hybrid

algorithms, namely, HD, HND-I, HND-II, HND-III, and HND-IV, demonstrate

higher computational performance over Gurobi. Among different enhancement

techniques, algorithm HND-IV provides the best solution with respect to run-
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ning time and optimality gap. However, algorithm HND-IV fails to solve 7 out

of 9 problem instances by obeying the pre-specified termination criteria and left

with an average optimality gap of 8.09%. Therefore, we employ paralellization

schemes PS-I and PS-II to further enhance the computational performance of this

algorithm. The results are reported in Table 4.5. The key findings from these com-

putational results are summarized below:

• The results in Table 4.5 show that incorporating Parallelization scheme I (PS-
I algorithm) in HND-IV significantly drops the optimality gap and running
time of the algorithm. On average, algorithm HND-IV + PS-I drops the run-
ning time by 53.15% over algorithm HND-IV while the reduction in running
time is achieved with an average optimality gap of 0.55%. Except the last in-
stance, this algorithm successfully solves all the problem instances reported
in Table 4.1 by obeying the pre-specified termination criteria.

• For the case with algorithm HND-IV + PS-II in Table 4.5, we also observe
notable improvements for most of the instances compared to the basic HND-
IV algorithm. The average running time of this algorithm is now dropped
by 35.1% over algorithm HND-IV. Note that this improvement in running
time is achieved with an average optimality gap of 0.92%. Despite these
notable improvements, algorithm HND-IV + PS-II is still unable to solve
three instances (instance 6, 8, and 9) by obeying the pre-specified termination
criteria.

• Our final observation is made between algorithms HND-IV + PS-I and HND-
IV + PS-II. Clearly, algorithm HND-IV + PS-I outperforms algorithm HND-
IV + PS-II with respect to both running time and optimality gap in most of
the instances, except three instances (instance 2, 4, and 9). To further demon-
strate the computational benefit of using the HND-IV + PS-I algorithm, we
run another set of experiments by varying different water level (w̄ijtω) and
supply (φmitω) scenarios as shown in Table 4.6. Note that the results in Table
4.6 are demonstrated for instance 7 only which represents the base case sce-
nario. The results clearly indicate that even though with an increase in w̄ijtω
and φmitω scenarios, the running time for both the parallelization schemes
increases, algorithm HND-IV + PS-I still consistently produces high quality
solutions within our tested experimental range.
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Algorithm 1: Progressive Hedging Algorithm

Initialize, r ← 1, ε, {ζr
mbsijtn}∀m∈M,b∈B,s∈S ,i∈I ,j∈Ji ,t∈T ,n∈N ← 0, νr ← ν0,

{βr
sijtn}∀s∈S ,(i,j)∈(I ,J ),t∈T ,n∈N ← 0, θr ← θ0

terminate← false

while (terminate = false) do

for n = 1 to N

Solve [IWT-PHA(n)] and obtain {Yr
mbsijtn}∀m∈M,b∈B,s∈S ,i∈I ,j∈J ,t∈T and

{Yr
sijtn}∀s∈S(i,j)∈(I ,J ),t∈T

end for

Calculate the consensus parameter:

Ȳr
mbsijt ←

1
N ∑N

n=1 Yr
mbsijtn; ∀m ∈ M, b ∈ B, s ∈ S , i ∈ I , j ∈ Jj, t ∈ T

Ȳr
sijt ←

1
N ∑N

n=1 Yr
sijt; ∀s ∈ S , (i, j) ∈ (I ,J ), t ∈ T

if (r > 1) then

Update the largangian parameter:

ζr
mbsijtn ←− ζr−1

mbsijtn + ϑr−1(Yr
mbsijtn − Ȳr−1

mbsijt)

∀m ∈ M, b ∈ B, s ∈ S , i ∈ I , j ∈ J , t ∈ T

βr
sijtn ←− βr−1

sijtn + θr−1(Yr
sijtn − Ȳr

sijt)

∀s ∈ S , (i, j) ∈ (I ,J ), t ∈ T

Update the penalty parameter:

ϑr ←− ∆ϑr−1 and ∆ > 1 ; θr ←− ∆θr−1 and ∆ > 1

end if

if ({|Yr
mbsijtn − Ȳr

mbsijt|+ |Y
r
sijt − Ȳr

sijt|}∀m∈M,b∈B,s∈S ,(i,j)∈(I ,J ),t∈T ≤ ε) then

terminate← true

end if

r ← r + 1

end while
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Table 4.1

Problem size and test instances

Instance

No.
|I| |J | |M| |B| |S| |T |

Binary

variables

Continuous

variables

Total

variables

No. of

constraints

Small

1 4 3 2 15 6 12 26,784 26,256 53,040 69,372

2 4 3 3 15 8 24 105,984 104,688 210,672 252,672

3 4 3 4 15 10 36 263,520 261,216 524,736 601,740

Medium

4 8 4 2 15 6 12 71,424 69,696 141,120 184,464

5 8 4 3 15 8 24 282,624 278,208 560,832 672,384

6 8 4 4 15 10 36 702,720 694,656 1,397,376 1,602,000

Large

7 12 5 2 15 6 12 133,920 130,416 264,336 345,348

8 12 5 3 15 8 24 529,920 520,848 1,050,768 1,259,328

9 12 5 4 15 10 36 1,317,600 1,300,896 2,618,496 3,001,140
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Table 4.2

Experimental result for basic and enhanced PHA algorithm (N=20)

Gurobi PHA PHA+HR PHA+HR+SB

Instance t(sec) ε(%) t(sec) ε(%) r t(sec) ε(%) r t(sec) ε(%) r

1 954 0.11 3,246 0.8 46 3,198 0.85 45 1,364 0.51 12

2 8,987 0.27 10,800 1.68 31 10,800 1.47 30 10,574 0.91 9

3 TL1 - 10,800 4.26 11 10,800 3.37 10 10,800 2.03 2

4 10,800 21.4 10,463 0.41 33 10,147 0.79 31 9,956 0.62 21

5 TL - 10,800 4.19 9 10,800 3.22 9 10,800 1.69 3

6 TL - TL - - TL - - TL - -

7 TL - 10,800 2.12 15 10,800 1.36 14 10,756 0.94 5

8 TL - 10,800 4.35 6 10,800 3.31 6 10,800 1.49 1

9 TL - OOM2 - - OOM - - TL - -

Average 6,913 7.17 9,672 2.54 21.57 9,620 2.05 20.71 9,292 1.17 7.57

1TL: No feasible solution within time limit

2OOM: Out of memory
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Table 4.3

Experimental result for basic and enhanced PHA algorithm (N=30)

Gurobi PHA PHA+HR PHA+HR+SB

Instance t(sec) ε(%) t(sec) ε(%) r t(sec) ε(%) r t(sec) ε(%) r

1 852 0.25 5,764 0.9 44 5,447 0.81 43 2,165 0.91 11

2 TL - 10,800 1.83 20 10,800 1.28 19 10,671 0.84 5

3 TL - 10,800 5.34 6 10,800 4.63 6 10,800 2.41 2

4 10,800 56.66 10,800 4.56 25 10,800 3.76 23 10,800 1.42 14

5 TL - 10,800 5.37 7 10,800 4.31 6 10,800 3.08 2

6 TL - OOM - - OOM - - TL - -

7 TL - 10,800 4.88 11 10,800 3.94 10 10,800 1.97 3

8 TL - OOM - - OOM - - TL - -

9 OOM - OOM - - OOM - - OOM - -

Average 5,826 28.45 9,960 3.81 18.66 9,907 3.12 17.83 9,339 1.77 6.16
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Table 4.6

Computational performance of the proposed parallelization schemes under

different water level (w̄ijtω) and supply (φmitω) scenarios

HND-IV + PS-I HND-IV + PS-II

Scenario t(sec) ε(%) r t(sec) ε(%) r

-40% 1,897 0.39 4 6,564 0.22 5

-20% 2,798 0.41 6 7,958 0.29 6

Base w̄ijtω 4,471 0.25 9 9,378 0.31 7

20% 4,519 0.29 9 9,659 0.46 7

40% 4,963 0.66 10 10,800 1.62 8

-40% 2,841 0.23 6 7,797 0.28 6

-20% 3,409 0.37 7 9,190 0.19 7

Base φmitω 4,471 0.25 9 9,378 0.31 7

20% 5,491 0.54 11 10,800 2.37 9

40% 6,248 0.32 13 10,723 0.98 8

4.5.3 Real-life Case Study
4.5.3.1 Impact of water level fluctuation (w̄ijtω) on overall system performance

This set of experiments investigate the impact of water level fluctuation (w̄ijtω)

on the overall system performance. To run the experiments, we consider four

different water level scenarios by varying w̄ijtω by ±20% and ±40%. Figure 4.9

summarizes the key results from this set of experiments. In Figure 4.9 and the

following figures, t = 1 stands for a representative day from January, and the fol-
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lowing months are represented in an ascending order which are ended at t = 12

which is a representative day in December. The experimental results indicate that

with 20% and 40% increase in mean w̄ijtω, the overall barge usage (Ymbsijt) drops

by approximately 10.9% and 20.1%, respectively, from the base case scenario. On

the other hand, when the mean w̄ijtω is dropped by 20% and 40%, then the overall

barge usage is increased by 21% and 47%, respectively, from the base case sce-

nario. This is due to the fact that when the mean w̄ijtω decreases, more barges are

now required with less loads compared to their design capacities to avoid being

stuck in any part of the waterway. Note that the peak barge usage is observed

in October (t = 10) when the water level drops to it’s minimum. Additionally,

Figure 4.9 shows that the water level reduction causes the barge to towboat ra-

tio (Ymbsijt/Ysijt) to increase. With a 40% drop in w̄ijtω, Ymbsijt/Ysijt reaches to a

maximum of 11 barges per towboat in October and November (t = 10 and 11).
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(a) Number of barges used (Ymbsijt) (b) Barge to towboat ratio((Ymbsijt/Ysijt)

Figure 4.9

Impact of w̄ijtω changes on barge selection (Ymbsijt) and barge to towboat ratio

(Ymbsijt/Ysijt)

4.5.3.2 Impact of commodity supply (φmitω) changes on overall system perfor-
mance

The next set of experiments study the impact of stochastic nature of the commod-

ity supply (φmitω) availability on the overall system performance. To run the ex-

periments, we consider four different supply scenarios by varying mean φmitω by

±20% and ±40%. Results in Figure 4.10 show that when the mean φmitω increases

by 20% and 40%, then the barge selection (Ymbsijt) decisions are increased by 8%

and 18%, respectively, from the base case scenario. On the other hand, when the

mean φmitω drops by 20% and 40%, then the barge selection (Ymbsijt) decisions are

dropped by 11% and 22%, respectively, from the base case scenario. Similar to

the previous experiment, the peak barge usage is observed in October (t = 10)
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when the water level drop is the minimum. Figure 4.10(b) illustrates that with

an increase in mean φmitω by 40%, on average 3 more barges are now required to

be connected with a towboat during the peak demand season (t = 10). In Figure

4.10(c), we observe that the unsatisfied demand (Umjt) reaches to +45% and +86%

with the reduction in φmitω by 20% and 40%, respectively. Finally, we observe that

the overall inventory storage increases with an increase in mean φmitω (see Figure

4.10(d)). It is interesting to note that in order to avoid the peak water level drop

season (October) and to satisfy the customer demand, the system utilizes a high

storage of commodities in the ports on September (t = 9).

4.6 Conclusion and Future Research Directions

This paper proposes a two-stage stochastic programming model to design and

manage an inland waterway transportation network with appropriate considera-

tions of the stochasticity associated with commodity supply and water level fluc-

tuations. A parallelized hybrid decomposition algorithm is introduced to solve the

proposed optimization model. Computational results indicate that the proposed

algorithm is capable of producing high quality solutions consistently in a timely

manner. In order to visualize and validate the modeling results, we demonstrate

a real-life case study by utilizing few inland waterway ports from the down Mis-

sissippi River. A number of managerial insights are drawn from the numerical ex-

periments, including the impact of stochastic commodity supply and water level

fluctuations on the inland waterway port operations.
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(a) Toatal barges (Ymbsijt) used (b) Barge to towboat ratio (Ymbsijt/Ysijt)

(c) Unsatisfied demand (Umjt) (d) Inventory storage (Hmit, Hmjt)

Figure 4.10

Impact of φmitω changes on overall system performance.
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To summarize, the major contributions of this study include: (i) proposing

a multi-commodity, multi-time period two-stage stochastic mixed-integer linear

programming model to minimize the inland waterway port operations under stochas-

tic commodity supply and water level fluctuations; (ii) introducing and testing an

efficient hybrid decomposition algorithm, combining Sample Average Approxi-

mation, and an enhanced Progressive Hedging and Nested Decomposition algo-

rithm, to efficiently solve realistic-size network design problems in a reasonable

timeframe; (iii) developing and testing different parallelization schemes to paral-

lelize the proposed hybrid decomposition algorithm; and (iv) obtaining manage-

rial insights from a real-life case study. Note that the proposed methodologies can

be adopted to efficiently solve other stochastic optimization problems. We believe

the managerial insights obtained from this study will help policy makers to de-

sign and manage a robust and cost-efficient inland waterway-based supply chain

network under uncertainty.

This study opens up numerous avenues for future research. Detailed consid-

erations of barge and towboat routing, scheduling, and re-positioning issues can

be made to analyze the impact of these issues on the inland waterway port opera-

tions. Further, the impact of inland waterway port operations under both natural

(e.g., hurricane, tornado) and/or human-induced (e.g., cyber attack) disruptions

can also be investigated. Future studies will address these issues.
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CHAPTER 5

A BENDER’S BASED NESTED DECOMPOSITION ALGORITHM TO SOLVE A

STOCHASTIC INLAND WATERWAY PORT MANAGEMENT PROBLEM

CONSIDERING PERISHABLE PRODUCT

5.1 Introduction

Inland waterway ports are the hearts of inland waterway transportation. While

ensuring the most cost efficient and environmentally friendly means of transporta-

tion, these ports support the access to the inland waterways and play a critical

role in nations overall waterway transportation system. In the United States, these

ports contribute about 15 billion dollars to the country’s total GDP (Gross Domes-

tic Product) along with offering above 250, 000 employment opportunities annu-

ally [89]. Additionally, these ports play a critical role in industrial and agricultural

development of remote rural areas [84]. However, despite of their substantial po-

tentiality, numerous factors, such as, water level fluctuation, dredging issues, con-

gestion, delays caused by scheduled and unscheduled closures of locks, and aging

infrastructure are imposing substantial threats to their overall productivity [140].

Also, it is worth mentioning that inland waterway transportation system is uti-

lized to transport mostly perishable products such as corn and soybeans. There-
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fore, the combined impact of these aforementioned factors can lead to a significant

commodity loss at ports that might discourage the potential users of this network.

A number of features of Inland waterway ports make them well distinguish-

able from the seaports. To mention a few, these ports are generally located pri-

marily near smaller bodies of water, handle barge traffic drafting upto 9 feet only,

and handle smaller counts of larger users and a large number of smaller users

[84]. Additionally, the varying precipitation levels in different periods of a year

causes severe fluctuations in the active water level at port channels and any part

of the waterway connecting two inland waterway ports [139, 94, 90]. Depending

on the intensity of this fluctuation, disruptions such as droughts and floods can be

experienced that may even cease port operations for a prolonged period of time.

Another distinguishing property of inland waterway ports is that these ports han-

dle high volume of perishable products that are seasonal in nature and can sig-

nificantly deteriorate with the progression of time. Therefore, this perishability

issue coupled with the stochastic water-level fluctuations, and highly uncertain

supply impose an unique challenge which restrict the optimization models avail-

able in the literature for the maritime transportation to be directly applicable for

the inland waterway ports. Therefore, in order to ensure long term sustainment of

the inland waterway ports, sophisticated optimization models need to be devel-

oped that best capture the unique characteristics of this cost efficient, reliable, and

environmentally-friendly transportation sector.
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Multiple research have been conducted to date that develop optimization mod-

els to address wide variant of seaport-related problems, such as ship routing and

scheduling [29, 68], inventory routing [5], berth allocation and scheduling [27,

141], empty container re-positioning [20], sailing speed optimization [73, 141],

bunker consumption [145], emission consideration [141], and disruption [43, 126].

Some researchers develop simulation models to address similar problems (e.g.,

[118, 125, 121, 44]). However, compared to the seaport literature, inland water-

way ports did not receive much attention from the research community. A few

studies has been conducted to characterize and model the specifics of deep draft

inland ports, capable of handling container cargos and ships; however, almost no

research attempts has been made that specifically considers the shallow draft inland

ports1 related issues. Considering their remarkable contributions to the overall

transportation system and the economy, creating better understanding of the shal-

low draft inland waterway ports is imperative in order to successfully design and

manage a sound and efficient inland waterway transportation network.

To fulfill this gap, this study proposes a mathematical model to capture the

prevalent issues related to inland waterway port (e.g., waterlevel fluctuations,

barge/towboat assignments, inventory decisions, and port delays) and combine

them under the same decision making framework that magnifies their impacts

on designing and managing a sound, robust inland waterway transportation net-

1The ports that is unable to handle barges/vessels drafting more than 9 feet are known as
shallow draft inland ports. Deep draft inland ports, on the other hand, are the ones that can handle
barges/vessels drafting more than 9 feet.
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work. We propose a capacitated, multi-commodity, multi-period, two-stage stochas-

tic mixed-integer linear programming model that jointly optimizes trip-wise barge

and towboat assignment decisions along with crucial supply chain decisions (e.g.,

inventory management, transportation decisions) under uncertainty in such a way

that the overall system cost can be minimized. Our proposed model efficiently

captures a number of realistic issues that appropriately characterize the shallow

draft inland waterway port operations, such as towboat and barge availability,

weight and volumetric capacity restriction of barges, dredging issues, shelf life

of commodities, product mix restrictions, storage restrictions at ports, trip re-

strictions between origin-destination ports, congestion issues, delays in locks and

dams, and many others.

Our proposed mathematical model is an extension of the traditional fixed charged,

uncapacitated network flow problem which is already known to be an NP-hard

problem [74]. Therefore, to cope with the computational challenge in solving this

model we develop a highly customized nested decomposition algorithm. This

algorithm combines enhanced Benders decomposition algorithm under Sample

Average Approximation framework to effectively solve the large instances of our

proposed model within a reasonable time frame.

Apart from proposing the mathematical model and solution approaches, we

demonstrate a real life application of our proposed model considering the inland

waterway transportation network along the lower Mississippi river. The outcome

of this study provides a number of managerial insights, such as the impact of wa-
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ter level fluctuations on towboat and barge selection, and impact of commodity

deterioration rate on overall system performance, which can effectively aid deci-

sion makers to design a reliable and cost-efficient shallow draft inland waterway

transportation network under uncertainty2

The remainder of this paper is organized as follows. Section 5.2 provides a

comprehensive review the related works. In Section 5.3 the problem statement

and the proposed mathematical model formulation is introduced. The decompo-

sition algorithms used to solve our proposed model are outlined in Section 5.4.

Section 5.5 presents a real life case study and summarizes the key managerial in-

sights and the computational performances of the proposed algorithms obtained

by solving the case study. Section 5.6 concludes the study with discussing some

future research avenues.

5.2 Literature review

The deep draft inland waterway ports have been gaining the focus from the re-

search community over several years. Different researchers have studied multiple

realistic issues such as barge and towboat routing and repositioning, berth alloca-

tion, port disruption, and delays in locks and dams related to deep-draft inland

waterway ports. This section provides a comprehensive overview of these stud-

ies, highlights the research gap, and explains the key contributions of our work

compared to the existing literature.

2This article has recently been accepted in International Journal of Production Economics [2].
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Alike seaports, inland waterway ports also experience berth allocation prob-

lem. Few researchers have studied this problem for deep-draft inland waterway

ports. For example, Grubivsic et al. [50] solve a berth layout design problem with

an objective to minimize the overall vessel waiting time at deep-draft inland wa-

terway ports. Depuy et al.[30] consider fleet location capacity, the total volume of

barges, and average handling time to ensure optimal berth allocation. Arango et

al.[11] adopted a combined simulation-optimization approach to solve this prob-

lem. Another research develops two mathematical models for modeling the berth

allocation problem and adopts a tree search procedure to solve these models [51].

Another research scheme investigates the cascading impcats of lock and dam

delays on the inland waterway transportation network including deep draft in-

land ports. Ting and Schonfeld [130] use a simulation-optimization framework to

determine the optimal capacity for lock and dams so that the costs associated with

the tow delays can be minimized. Similarly, the research by Wang and Schonfeld

[147] use a combined simulation-optimization approach to determine an optimal

strategy to schedule the investment decisions for lock reconstruction and rehabili-

tation. Ting and Schonfeld [129] develop an integrated tow control algorithm that

can reduce the tow delays associated with a series of locks.

Barge routing and empty container repositioning problems are another preva-

lent areas in deep draft inland waterway port research. These problems are gen-

erally addressed together in the existing literature. Braekers et al. [20] solves the

barge routing and empty container repositioning problem between a seaport and
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few hinterland ports. Later, this research has been extended to include the vessel

capacity and round trip service frequency [19]. Marass [76] develops a mixed-

integer linear programming (MILP) model to optimize the the transport routes of

chartered container ships or tows for an inland waterway port. Davidovic et al.

[28] discuss a barge and container ship routing problem and propose a guided lo-

cal search technique to solve the problem. Most recently, An et al. [9] proposed

a MINLP model to solve the empty container repositioning problem for the ship-

ping network.

Different natural (e.g., hurricane, tornado) or human-induced (e.g., cyber-attack)

disasters may interrupt or cease the port operations for an extended period of time

[54, 57] and impact the overall supply chain [7, 55, 53]. Realizing this situation, a

few studies develops models to measure the resiliency of a deep draft inland wa-

terway port. Among those studies, Baroud et al. [13] determine the important

waterway links and the precedence of link recovery in case of a disaster by con-

vering different stochastic resilience-based component importance measures into

an optimization model. Oztanriseven and Nachtman [87] adopted a simulation

approach to determine the potential economic impacts of inland waterways dis-

ruption response. This research uses the McClellan-Kerr Arkansas River naviga-

tion system as a testbed to visualize and validate the simulation results. Pant et

al. [103] propose a dynamic, multi-regional interdependency model to investigate

the impact of disruptions on the waterway networks, including both ports and

waterway links. Another study [59] propose a Bayesian network based approach
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to model the infrastructure resilience of an inland waterway port. Other related

research in this area include port-specific economic analysis [4, 87, 151, 67], deter-

mining optimal dredging schedule and investment decisions [86, 113, 18], investi-

gating the efficiency of inland waterway container terminals [152], tug scheduling

between seaport to inland ports [39, 45, 157], and carbon emission considerations

[155, 71, 25].

Different from the studies mentioned above, our study considers different shal-

low draft inland waterway port related issues such as optimal transportation of

perishable products considering their shelf life, waterlevel fluctuation, delay in

locks and dams, optimal towboat and barge assignment, barge availability and

maintenance considerations under uncertainty. Some existing studies consider

shallow draft inland waterway ports as a tier while designing a different supply

chain networks such as biomass supply chain (e.g., [107, 81, 80]), coal supply chain

(e.g., [35, 47, 62]), grain supply chain (e.g., [88, 10, 31]), and many others. However,

very few other studies [99, 96, 98, 97] solely focused on the shallow draft inland

waterway ports, where the [99] and [96] characterize the shallow draft inland wa-

terway ports and demonstrate methodologies to analyzes the competitiveness of a

given port among a set ports. The next studies [98, 97] consider few shallow draft

inland waterway port related issues and develop MILP model to optimize the re-

source usage, and barge and towboat assignment decisions under a deterministic

setting. The shelf life of commodities and stochasticity associated with waterlevel

fluctuation and commodity availability were not considered in that model. Our

235



www.manaraa.com

study fills this literature gap by considering all these crucial factors (e.g., shelf life

of commodities, stochastic waterlevel fluctuation, and uncertain commodity avail-

ability) along with capturing the true characteristics of the inland waterway trans-

portation. Few studies [37, 93, 24, 114] consider the water level fluctuation issues

for maritime ports. However, in the case of inland waterway transportation, not

much research attempts are observed that penetrate on this specific issue. Further,

the commodity loss due to the limited shelf life of agricultural commodities is also

ignored in the current literature the impact of which can be very significant on the

optimal transportation and resource allocation decisions at ports under uncertain

supply conditions. This signifies that the proper modeling efforts, that capture the

aforementioned realistic features, need to be made in order to design a reliable

inland waterway transportation network.

5.3 Problem Description and Model Formulation

This section presents a capacitated, multicommodity, multi-time period, two-stage,

stochastic programming model formulation to efficiently design and manage an

inland waterway transportation-based logistics network considering the stochas-

tic, time-variant nature of commodity supply and water-level fluctuations. The

model is effectively designed to capture the possible loss in perishable commodi-

ties governed by prolonged storage and delayed transportation. Let us consider an

inland waterway transportation network G = (D,A) where D be the set of nodes

and A denotes the set of arcs that connects different tiers of the network. Set D
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consists of a set of origin ports I , from which commodities are shipped and a set

of destination ports J that receive and process the shipped commodities. Figure

5.1 illustrates a simplified inland waterway transportation network consisting of

two origin ports and three destination ports.

Network G transports a set of agricultural commodities M = {1, 2, 3, ..., M}

through its two tiers (origin ports and destination ports) over a predetermined set

of time periods T = {1, 2, 3, ..., T}. Subsets Ij and Ji are introduced in our model

where, set Ij consists of the subset of origin ports connected to port j ∈ J and Ji

represents the subset of destination ports connected to origin port i ∈ I . Further,

we introduce the scenario set ω ∈ Ω that stands for different commodity supply

and water-level fluctuation scenarios. Given ρω as the probability of any particular

realization, the sum of the all realizations of any sample space Ω should be 1, i.e.,

∑ω∈Ω ρω = 1.

Inland waterway transportation network primarily transports agricultural com-

modities such as corn, rice, and soybean the supply of which are highly seasonal

in nature. For instance, in the U.S. corn is harvested between mid-July to late

November of each calander year [133]. Moreover, knowing the seasonality asso-

ciated with commodity harvesting, their estimated supply availability by season

are also not same for each year. In fact, this amount is highly stochastic in nature.

Therefore, to realistically capture this issue we assume that each origin port i ∈ I

is provided with a stochastic amount ϕmitω of commodity m ∈ M at time period
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Figure 5.1

Illustration of a inland waterway transportation network
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t ∈ T under scenario ω ∈ Ω. These commodities will be transported through

different arcs A of network G and used to serve the demand at destination ports

j ∈ J . The inland waterway commodity transportation is done by the association

of barges and towboats. Let B = {1, 2, 3, ..., B} and S = {1, 2, 3, ..., S} respectively

represent the set of barges and the set of towboats that can be used to transport

commodities between any port pair (i, j) ∈ (I ,J ). Set S is a ordered set where

the first element of the set, i.e., towboat 1 in set S represents the least powerful

towboat and towboat S be the most powerful one. Based on their capabilities we

denote δs/δs to be the maximum/minimum number of barges that can/should

be carried out by any particular towboat s ∈ S . In any time period t, the fixed

cost of using any towboat s ∈ S and the loading and unloading cost for commod-

ity m ∈ M to barge b ∈ B is denoted as ψst and ηmbt. Further, we consider the

commodity carrying capacity of barges through two different parameters wb and

vb where the former one represent the weight carrying capacity and the later one

stands for volumetric capacity of barge b, respectively. The unit transportation

cost of commodity m ∈ M using barge b ∈ B connected to towboat s ∈ S of

trip n ∈ Nij along arc (i, j) ∈ (I ,J ) at time period t ∈ T that was procured at

time period τ ∈ T is denoted by cmbsnijτt where τ ≤ t. Additionally to account

for the periodic maintenance requirements for barges and towboats, two binary

availability parameters abit and asit are defined that denote the availability of any

barge and towboat in any port i at any particular time period t, respectively.
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Each port i ∈ I ⋃J is assumed to have inventory, restricted by a maximum

commodity storage capacity of hi. The inventory holding cost for commodity

m ∈ M in port i ∈ I ⋃J between time periods τ ∈ T and t ∈ T under sce-

nario ω ∈ Ω is denoted as hmiτt (τ ≤ t). We also capture the deterioration rate

of carrying commodity m ∈ M in any port inventory between two consecutive

time periods τ ∈ T and t ∈ T by introducing parameter αmτt. The active weight

capacity of any barge between any specific port pairs at any given time t ∈ T

is defined using parameters witω, wjtω, and wijtω, where witω and wjtω denote

the maximum weight carrying capacity at port channel i ∈ I ⋃J at time period

t ∈ T under scenario ω ∈ Ω and wijtω is the allowable weight that can be carried

through the waterway between the same port pair (i, j) ∈ (I ,J ) at time period

t ∈ T under scenario ω ∈ Ω. Essentially, the waterway depth at port channel or

throughout the waterbody may vary in different time periods of the year depend-

ing upon the amount of sediment, silt, or mud accumulated in the waterbed. If

such accumulation is too intense at any portion of the waterway (e.g., near ports

or between two connecting ports), it increases the height of the waterbed resulting

in a decrease in the waterdepth. This waterdepth reduction can sometimes be too

intense that it seriously impacts the transportation of shallow draft water vessels

through the waterway. Resultantly, the barges need to carry commodities below to

their designed weight carrying capacity of wb to avoid being stuck at any point of

their navigational waterway. Therefore, the maximum effective weight that a barge

m ∈ M can carry under this restriction would be the minimum weight between
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the weight capacity near origin and destination ports, namely, witω and wjtω, and

the channel between each origin-destination ports (i, j) ∈ (I ,J ), namely, wijtω,

i.e., min{wijtω, wb} where wijtω := min{witω, wijtω, wjtω}. Considering the unpre-

dictability of accurately estimating this restriction, we consider wijtω as a stochastic

parameter in our proposed model formulation. Further, we define a set of possible

trips along arc (i, j) ∈ (I ,J ) as Nij. As discussed earlier, due to stochastic weight

carrying capacity of barges, in certain time periods more trips are needed to sup-

port commodity transportation. This is captured through the parameter τijt that

represents the number of possible trips between each source-destination ports. Fi-

nally, we assume that the commodity demand at destination ports, denoted by

dmjt, can be satisfied either through barge transportation from the origin ports or

via an external source by paying a unit penalty cost of πmjt. We now summarize

the following notations for our proposed mathematical model formulation.

Sets:

• I : set of origin ports, i ∈ I

• J : set of destination ports, j ∈ J

• M: set of commodities, m ∈ M

• S : set of towboats, s ∈ S

• B: set of barges, b ∈ B

• Nij: set of trips along arc (i,j) ∈ (I ,J ), n ∈ Nij

• T : set of time periods, t ∈ T

• Ij: set of origin ports connected to destination port j, ∀j ∈ J

• Ji: set of destination ports connected to origin port i, ∀i ∈ I

• Ω: set of possible scenarios ω, ∀ω ∈ Ω
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Parameters:

• ψst: fixed cost of using towboat s ∈ S at time period t ∈ T

• ηmbt: fixed cost for loading and unloading commodity m ∈ M in barge b ∈ B
at time period t ∈ T

• cmbsnijτtω: unit cost of transporting commodity m ∈ M along arc (i, j) ∈
(I ,J ) using barge b ∈ B of towboat s ∈ S in trip n ∈ Nij at time period
t ∈ T that were purchased at time period τ ∈ T under scenario ω ∈ Ω,
where τ < t

• γmit: procurement cost of commodity m ∈ M in port i ∈ I at time period
t ∈ T

• hmiτtω: unit inventory holding cost for commodity m ∈ M in port i ∈ I ⋃J
between time period time period τ ∈ T and t ∈ T under scenario ω ∈ Ω,
where τ < t

• πmjt: unit penalty cost of not satisfying demand for commodity m ∈ M in
port j ∈ J at time period t ∈ T

• ϕmitω: supply availability of product m ∈ M in port i ∈ I at time period
t ∈ T under scenario ω ∈ Ω

• hi: commodity storage capacity at port i ∈ I ⋃J
• αmτt: deterioration rate of commodity m ∈ M due to storing between time

period τ ∈ T and t ∈ T under scenario ω ∈ Ω, where τ < t

• asit, abit: binary availability of towboat s and barge b at port i ∈ I

• δs, δs: maximum/minimum number of barges to carry by towboat s ∈ S

• δs: capacity of the most powerful towboat s ∈ S

• wb: weight capacity of a barge b ∈ B

• wijtω: the minimum of {witω, wijtω, wjtω} where witω and wjtω indicate the
maximum weight carrying capacity at port i ∈ I ⋃J and wijtω the allowable
weight that can be carried between the channel (i, j) ∈ (I ,J ) at time period
t ∈ T under scenario ω ∈ Ω. The last weight (wijtω) depends on the depth
of the waterway and should not exceed the minimal water-level between the
origin-destination ports

• ρm: density of commodity m ∈ M

• vb: volume capacity of barge b ∈ B
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• θit: total number of barges available in port i ∈ I at time period t ∈ T

• tl, tu: average loading and unloading time of a barge

• ∆: average delay in locks

• lij: number of locks between origin port i ∈ I and destination port j ∈ J

• dij: distance between origin port i ∈ I and destination port j ∈ J

• v̄st: average speed of towboat s ∈ S at time period t ∈ T

• tij: allowable transport time limit between each origin port i ∈ I to destina-
tion port j ∈ J

• τijt: maximum number of trips that can be made along arc (i, j) ∈ (I ,J ) at
time period t

• dmjt: demand for commodity of type m ∈ M in port j ∈ J at time period
t ∈ T

• ρω: probability of scenario ω ∈ Ω

First Stage Decision Variables:

• Ysnijt: 1 if a towboat s ∈ S is used in arc (i, j) ∈ (I ,J ) in trip n ∈ Nij at time
period t ∈ T ; 0 otherwise

• Ymbsnijt: 1 if commodity m ∈ M is carried on barge b ∈ B of towboat s ∈ S
to serve trip n ∈ Nij between port i ∈ I and port j ∈ J at time period t ∈ T ;
0 otherwise

Second Stage Decision Variables:

• Zmitw: amount of commodities of type m ∈ M processed at port i ∈ I at
time period t ∈ T under scenario ω

• Xmbsnijτtw: amount of commodities of type m ∈ M that were purchased at
time period τ and transported t ∈ T using barge b ∈ B of towboat s ∈ S
for trip n ∈ Nij along arc (i, j) ∈ (I ,J ) under scenario ω ∈ Ω, where
(τ, t) ∈ T |τ ≤ t

• Hmiτtw: amount of commodities of type m ∈ M stored in port i ∈ I ⋃J
between time period τ and t under scenario ω ∈ Ω, where (τ, t) ∈ T |τ ≤ t

• Umjtw: amount of commodities of type m ∈ M shortage in destination port
j ∈ J at time period t ∈ T under scenario ω ∈ Ω
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• Pmjτtw : Satisfied demand of commodities of type m ∈ M in destination port
j ∈ J with commodities purchased at time period τ and transported t ∈ T
under scenario ω ∈ Ω , where (τ, t) ∈ T |τ ≤ t

Following first and second-stage decision variables are defined for our pro-

posed two-stage stochastic programming model formulation. Decision variables

Y1 := {Ysnijt|∀s ∈ S , n ∈ Nij, i ∈ I , j ∈ Ji, t ∈ T } and Y2 := {Ymbsnijt|∀m ∈

M, b ∈ B, s ∈ S , n ∈ Nij, i ∈ I , j ∈ J , t ∈ T } are first-stage variables that re-

spectively determine which towboat to use between any origin-destination pair in

a given time period and which barge to use for carrying any particular product at

any given origin port, respectively, i.e.,

Ysnijt =


1 if a towboat s is used in trip n ∈ Nij between ports (i, j) ∈ (I ,J )

at time period t

0 otherwise;

Ymbsnijt =


1 if barge b connected to towboat s is used in trip n ∈ Nij to carry

commodity m between port i and j at time period t

0 otherwise;

The second-stage decision variables include Z := {Zmitw|∀m ∈ M, i ∈ I , t ∈

T , ω ∈ Ω} to denote the amount of commodities of type m ∈ M processed at

port i ∈ I at time period t ∈ T under scenario ω ; X := {Xmbsnijτtω|∀m ∈ M, b ∈

B, s ∈ S , n ∈ Nij, (i, j) ∈ (I ,J ), (τ, t) ∈ T |τ ≤ t, ω ∈ Ω} to denote the amount of

commodities of type m ∈ M that came in origin port i ∈ I at time period τ ∈ T

and to port j ∈ J at time period t ∈ T under scenario ω ∈ Ω using barge b ∈ B
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and towboat s ∈ S at trip n ∈ Nij ; H := {Hmiτtω|∀m ∈ M, i ∈ I ⋃J , (τ, t) ∈

T |τ ≤ t, ω ∈ Ω} to denote the amount of commodities of type m ∈ M stored

in port i ∈ I ⋃J between time period τ to t and under scenario ω ∈ Ω ; P :=

{Pmjτtw|∀m ∈ M, j ∈ J , (τ, t) ∈ T |τ ≤ t, ω ∈ Ω} amount of demand satisfaction

for commodity m ∈ M in destination port j ∈ J with commodities purchased at

time period τ and transported at time period t ∈ T under scenario ω ∈ Ω , where

(τ, t) ∈ T |τ ≤ t; and U := {Umjtω} to denote the amount of commodities of type

m ∈ M shortage in destination port j ∈ J at time period t ∈ T under scenario

ω ∈ Ω. For notational simplicity, we define Y as Y := Y1⋃Y2.

Analyzing the prevalent issues of inland waterway transportation network it

is clearly noticeable that the barge transportation through this network is very

frequently impacted by the delays in locks between two connecting ports. To cap-

ture this issue, we model barge delays through a feasible time limit, denoted by

tij, instead of developing highly complex nonlinear model to explicitly capture

lock congestion. The introduction of tij provides a feasible time window for tow-

boats to deliver the commodities between each source-destination pair. Violating

this time window will be uneconomical and sometimes infeasible considering the

commodity transportation requirement. Let ∆, lij, and dij represent the average

delay in locks, the number of locks, and the actual waterway distance between

each origin-destination port (i, j) ∈ (I ,J ). Further, we define v̄st as the aver-

age speed of a towboat s ∈ S and tl and tu as the average loading and unload-

ing time for a barge. The total travel time for a towboat s ∈ S between each
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origin-destination port (i, j) ∈ (I ,J ) at time t ∈ T can now be approximated

as:
{

∑m∈M∑b∈B(tl + tu)Ymbsnijt + (
dij
v̄st

+ ∆lij)Ysnijt

}
, while this travel time is as-

sumed to be restricted by a feasible time limit tij.

[PIM] Minimize
Y

∑
s∈S

∑
n∈Nij

∑
i∈I

∑
j∈Ji

∑
t∈T

(
ψstYsnijt + ∑

m∈M
∑
b∈B

ηmbtYmbsnijt

)

+ ∑
ω∈Ω

ρωQ(Y, ω)

(5.1)

subject to

∑
m∈M

Ymbsnijt ≤ 1∀b ∈ B, s ∈ S , n ∈ Nij, i ∈ I ,

j ∈ Ji, t ∈ T (5.2)

∑
S∈S

Ysnijt ≤ 1∀n ∈ Nij, i ∈ I , j ∈ Ji, t ∈ T (5.3)

δsYsnijt ≤ ∑
m∈M

∑
b∈B

Ymbsnijt ≤ δsYsnijt∀s ∈ S , n ∈ Nij, i ∈ I ,

j ∈ Ji, t ∈ T (5.4)

∑
m∈M

∑
b∈B

∑
s∈S

∑
n∈Nij

∑
j∈J

Ymbsnijt ≤ θit∀i ∈ I , t ∈ T (5.5)

∑
S∈S

∑
n∈Nij

Ysnijt ≤ τijt∀i ∈ I , j ∈ Ji, t ∈ T (5.6)

∑
n∈Nij

∑
j∈Ji

Ysnijt ≤ asit∀s ∈ S , i ∈ I , t ∈ T (5.7)

∑
m∈M

∑
s∈S

∑
n∈Nij

Ymbsnijt ≤ abit∀b ∈ B, i ∈ I , j ∈ Ji, t ∈ T(5.8)

∑
m∈M

∑
b∈B

(tl + tu)Ymbsnijt +

(
dij

vst
+ ∆lij

)
Ysnijt ≤ tij∀n ∈ Nij, s ∈ S , i ∈ I ,

j ∈ Ji, t ∈ T (5.9)

Ymbsnijt ∈ {0, 1}∀m ∈ M, b ∈ B, s ∈ S ,

n ∈ Nij, i ∈ I , j ∈ Ji, t ∈ T (5.10)
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Ysnijt ∈ {0, 1}∀s ∈ S , n ∈ Nij, n ∈ Nij, i ∈ I , i ∈ I , j ∈ Ji, t ∈ T (5.11)

with Q(Y, ω) being the solution of the following second-stage problem:

Q(Y, ω) = Minimize
X,H,U

∑
t∈T

∑
m∈M

(
∑

i∈I ⋃J
t

∑
τ=1

hmiτtHmiτtω + ∑
b∈B

∑
s∈S

∑
n∈Nij

∑
(i,j)∈(I ,J )

t

∑
τ=1

cmbsnijτtXmbsnijτtω + ∑
i∈I

γmitZmitω + ∑
j∈J

πmjtUmjtw

)
(5.12)

Subject to

Zmitω ≤ ϕmitω∀m ∈ M, i ∈ I , t ∈ T , ω ∈ Ω (5.13)

Zmitω − ∑
b∈B

∑
s∈S

∑
n∈Nij

∑
j∈Ji

Xmbsnijttω = Hmittω∀m ∈ M, i ∈ I , t ∈ T , ω ∈ Ω (5.14)

(1− αmτ(t−1))Hmiτ(t−1)ω = Hmiτtω − ∑
b∈B

∑
s∈S

∑
n∈Nij

∑
j∈Ji

Xmbsnijτtω∀m ∈ M,

i ∈ I , (τ, t) ∈ T |τ ≤ t− 1, ω ∈ Ω (5.15)

∑
b∈B

∑
s∈S

∑
∈Nij

∑
i∈Ij

Xmbsnijttω = Pmjttω + Hmjttω∀m ∈ M,

j ∈ J , t ∈ T , ω ∈ Ω (5.16)

∑
b∈B

∑
s∈S

∑
∈Nij

∑
i∈Ij

Xmbsnijτtω − Pmjτtω = Hmjτtω − (1− αmτ(t−1))Hmjτ(t−1)ω∀m ∈ M,

j ∈ J , (τ, t) ∈ T |τ ≤ t− 1, ω ∈ Ω (5.17)

∑
m∈M

t

∑
τ=1

Hmiτtω ≤ hi∀i ∈ I
⋃
J , t ∈ T , ω ∈ Ω (5.18)

t

∑
τ=1

Pmjτtω + Umjtω = dmjt∀m ∈ M, j ∈ J , t ∈ T , ω ∈ Ω (5.19)

t

∑
τ=1

Xmbsnijτtω ≤ min{wijtω, w̄b}Ymbsnijt∀m ∈ M, b ∈ B, s ∈

S , n ∈ Nij, i ∈ I , j ∈ Ji, t ∈ T , ω ∈ Ω (5.20)
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t

∑
τ=1

Xmbsnijτtω ≤ ρmvbYmbsnijt∀m ∈ M, b ∈ B, s ∈ S , n ∈ Nij, i ∈ I , j ∈ Ji,

t ∈ T , ω ∈ Ω (5.21)

Xmbsnijτtω, Hmiτtω, Hmjτtω, Zmitω, Pmjτtω, Umjtω ∈ R+ (5.22)

The objective function (5.1) sums up the first-stage costs and the expected second-

stage costs. The first two terms in (5.1) represent the fixed costs of using towboats

and loading and unloading commodities into the barges. Constraints (5.2) handles

the product mix issues stating only one commodity of type m ∈ M can be loaded

to a given barge b ∈ B in time period t ∈ T . Constraints (5.3) ensures that that

at any time period t each towboat can use only one of the available trips. Con-

straints (5.4) restrict the minimum (δs) and maximum (δs) number of barges that

can be connected with a given towboat s ∈ S at any time period t ∈ T . The max-

imum barge usage at any given port i ∈ I considering the available barges (θit)

at that port in time period t ∈ T is handled through constraints (5.5). Addition-

ally, through constraints (5.6) the towboat usage between each origin destination

port (i, j) ∈ (I ,J ) at time t ∈ T is restricted to a maximum τijt. Further, we use

(5.7) and (5.8) to captures the effect of periodic availability of barge and towboat

in inland waterway transportation network. Due to aging and other related is-

sues, barges and towboats needs to have periodic maintenance at different time

periods of the year. If such activity occurs for any barge b ∈ B or towboat s ∈ S

at any time t ∈ T the respective barge and towboat become unavailable in that
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time period. This unavailability issue is captured through binary parameters asit

and abit in constraints (5.7) and (5.8). Further, the total travel time restriction for a

towboat s ∈ S between each origin destination port (i, j) ∈ (I ,J ) at time t ∈ T

is captured through constraints (5.9). Finally, constraints (5.10) and (5.11) set the

integrality constraints.

The second stage problem intends to minimize the inventory storage cost, com-

modity transportation cost, procurement cost, and third party commodity supply

cost (equation (5.12)). Among the second stage constraints, constraints (5.13) re-

strict the processing of commodity m ∈ M according to its availability ϕmitω at

port i ∈ I in time period t ∈ T under scenario ω ∈ Ω. Constraints (5.14) and

(5.15) are flow balance constraints for commodity storage and transportation at

origin port i ∈ I . Similarly, combination of constraints (5.16) and (5.17) balances

the commodity flow and inventory at destination port j ∈ J . Constraints (5.18)

set the commodity storage restriction for origin and destination ports i ∈ (I ∪ J ).

Constraints (5.19) ensure that, at any time period t ∈ T , the demand for commod-

ity m ∈ M at destination port j ∈ J must be satisfied either through the water-

way transportation network or from a third-party supplier. Further, we use con-

straints (5.20) to match the amount of commodity transportation based on stochas-

tic waterway condition and the barge wight capacity; constraints (5.21) to match

the amount of commodity transportation following the volumetric capacity of the

barge. Finally, we add constraints (5.22) as standard non-negativity constraints.
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5.4 Solution Approach

By setting |Ω| = |T | = |S| = |B| = 1, model [PIM] can be reduced to a fixed charge

network flow problem which is a proven NP-hard problem [12, 65]. This implies

that, model [PIM] is also NP-hard from solution viewpoint, therefore, commer-

cial solvers, such as CPLEX and Gurobi are unable to solve large-scale instances

of this problem. In order to overcome this computational burden, we propose a

hybrid algorithm combining the Sample average approximation (SAA) technique

with an enhanced Benders decomposition algorithm to solve model [PIM] within

a reasonable time frame. The next few subsections discuss the structural details of

this algorithm.

5.4.1 Sample Average Approximation

The uncertain availability of agricultural products (ϕmitω) and highly unpre-

dictable water level fluctuations (wijtω) require the investigation of large number

of scenarios to guarantee a robust network design solution. However, solving

[PIM] for a large number of scenarios is computationally challenging and requires

significant time and computational efforts. Therefore, to address this issue we

apply Sample Average Approximation(SAA) method in solving large instances of

model [PIM]. SAA is a well-known technique and has been widely adopted in dif-

ferent application areas [119, 1]. Interested readers may review the studies by [66]

and [92] to get detailed understanding about the statistical evaluation (e.g., vali-

dation and error analysis, stopping rules) and convergence properties of the SAA.
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Following the SAA algorithm, take a random sample from the set of all available

scenarios and generate SAA problem for that sample scenarios. More specifically,

we select a sample of E scenarios from the scenario set Ω (E << Ω), and approxi-

mate the recourse function with the sample average function 1
E ∑e∈E Q(Y, ω). The

problem [PIM] can be approximated by the following SAA problem:

Minimize
Y∈Y

{
ĝ(Y) : ∑

t∈T

(
∑
s∈S

∑
n∈Nij

∑
i∈I

∑
j∈Ji

(
ψstYsnijt + ∑

m∈M
∑
b∈B

ηmbtYmbsnijt

)

+
1
|E|

E

∑
e=1

Q(Y, e)

}
(5.23)

For a sufficiently large sample size E, problem (5.23) converges to the optimal

solution of original model [PIM] with a probability of 1.0 [66]. However, with

large E, the computational time in solving problem (5.23) becomes significantly

high. Therefore, in estimating E, an evident trade-off exists between the achieved

solution quality and the computational burden to solve large scale SAA subprob-

lems. Now we summarize the steps involved in applying the SAA technique to

solve model [PIM]:

1. Generate R independent sample of product supply and water level scenar-
ios of size |E| i.e., {ϕ1

r (ω), ϕ2
r (ω), ..., ϕE

r (ω)} and {w1
r (ω), w2

r (ω), ..., wE
r (ω)},

∀r = 1, 2, ..., R, where ϕ = {ϕmitω, ∀m ∈ M, i ∈ I , t ∈ T , ω ∈ Ω}, w =
{wijtω, ∀i ∈ I , j ∈ J , t ∈ T , ω ∈ Ω}. Now solve the corresponding SAA
problem and obtain the approximated lower bound for the algorithm:

Minimize
Y∈Y

{
ĝ(Y) := ∑

t∈T

(
∑
s∈S

∑
n∈Nij

∑
i∈I

∑
j∈Ji

(
ψstYsnijt + ∑

m∈M
∑
b∈B

ηmbtYmbsnijt

)

+
1
E

E

∑
e=1

Q(Y, e)
}

(5.24)

This SAA problem is solved for each replication r = 1, ..., R. Let vr
E and Ŷr

E
denote the optimal objective value and the optimal solution of (5.24), respec-
tively.
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2. In the next step we compute the average of the optimal objective values of all
SAA problems, v̄E

R. Next, we define σ2
v̄E

R
as the variance of all corresponding

SAA problems. We obtain:

v̄E
R =

1
R

R

∑
r=1

vr
E; σ2

v̄R
E
=

1
(R− 1)R

R

∑
r=1

(vr
E − v̄E

R)
2

Parameter v̄E
R is an unbiased estimator of the optimal objective value of [PIM].

Let us denote the optimal objective value of [PIM] as v∗, v̄E
R satisfies the prop-

erty, v̄E
R < v∗. Therefore, v̄E

R provides a statistical lower bound of the original
model [PIM] and σ2

v̄E
R

is the estimator of the variance of this lower bound.

3. Now from the obtained first-stage solutions from R replications, we pick any
solution Ŷr

E ∈ Y. We use this solution Ŷr
E to evaluate problem [PIM] with a

newly generated reference sample of size E′ (E′ << E) as follows:

g̃E′(Ỹ) = ∑
s∈S

∑
n∈Nij

∑
i∈I

∑
j∈Ji

∑
t∈T

(
ψstỸsnijt + ∑

m∈M
∑
b∈B

ηmbtỸmbsnijt

)

+
1
|E′|

E′

∑
e=1

Q(Y, e) (5.25)

Here, the estimator g̃E′(Ỹ) provides an upper bound for the main problem
[PIM]. The variance of g̃E′(Ỹ) is obtained as follows:

σ2
E′(Ỹ) =

1
(E′ − 1)E′

E′

∑
e=1

{
∑
s∈S

∑
n∈Nij

∑
i∈I

∑
j∈Ji

∑
t∈T

(
ψstỸsnijt + ∑

m∈M
∑
b∈B

ηmbtỸmbsnijt

)

+Q(Y, e)− g̃E′(Ỹ)
}

4. Through the estimators calculated in last two steps, the optimality gap gapE,R,E′(Ỹ)
and its variance σ2

gap is calculated as follows:

gapE,R,E′(Ỹ) = g̃E′(Ỹ)− v̄E
R

σ2
gap = σ2

E′(Ỹ) + σ2
v̄E

R

The confidence interval for the optimality gap, gapE,R,E′(Ỹ) is obtained as
follows:

g̃E′(Ỹ)− v̄E
R + zα{σ2

E′(Ỹ) + σ2
v̄E

R
}1/2

where zα = Φ−1(1− α) , and Φ(z) is the cumulative distribution function of
the standard normal distribution.
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5.4.2 Benders Decomposition Algorithm

The step1 of SAA algorithm requires solving a two-stage stochastic mixed-

integer linear programming model with |E| scenarios. Depending on the size of

|M|, |B|, |S|, |N |, |I|, |J | and |T | problem (5.23) can still be computationally ex-

pensive. To address this issue, we employ a well-known partitioning method,

Benders Decomposition Algorithm [15], to solve the SAA problem. In Benders de-

composition algorithm, the original problem is decomposed into two parts: an in-

teger master problem and a linear subproblems. Before introducing the subproblems,

let us first present the underlying Benders reformulation for model [PIM(SAA)]

as follows:

Minimize
Y∈Y

{
∑
t∈T

∑
s∈S

∑
n∈Nij

∑
i∈I

∑
j∈Ji

(
ψstYsnijt + ∑

m∈M
∑
b∈B

ηmbtYmbsnijt

)

+
1
E

E

∑
e=1

SPe(X, H, U, Z|Ŷ1, Ŷ2
)

}
(5.26)

Subject to (5.2)-(5.11) and (5.13)-(5.22). We present SPe(X, H, U, Z|Ŷ1, Ŷ2
) as the

scenario-specific subproblem. For given values of Ŷ1 := {Ymbsnijt|∀m ∈ M, b ∈

B, s ∈ S , n ∈ Nij, i ∈ I , j ∈ Ji, t ∈ T } and Ŷ2 := {Ysnijt|∀s ∈ S , n ∈ Nij, i ∈ I , j ∈

Ji, t ∈ T } problem [PIM(SAA)] can be reduced to the following primal subproblem

that includes only continuous variables X, H, U, Z as follows:

SPe(X, H, U, Z|Ŷ1, Ŷ2
) :Minimize

{
∑
t∈T

∑
m∈M

(
∑

i∈I ⋃J
t

∑
τ=1

hmiτtHmiτte + ∑
i∈I

γmitZmite

+ ∑
j∈J

πmjtUmjte + ∑
b∈B

∑
s∈S

∑
n∈Nij

∑
(i,j)∈(I ,J )

t

∑
τ=1

cmbsnijτtXmbsnijτte

)}
(5.27)
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Subject to

Zmite ≤ ϕmite∀m ∈ M, i ∈ I , t ∈ T (5.28)

Zmite − ∑
b∈B

∑
s∈S

∑
n∈Nij

∑
j∈Ji

Xmbsnijtte = Hmitte∀m ∈ M, i ∈ I , t ∈ T (5.29)

(1− αmτ(t−1))Hmiτ(t−1)e = ∑
b∈B

∑
s∈S

∑
n∈Nij

∑
j∈Ji

Xmbsnijτte + Hmiτte

∀m ∈ M, i ∈ I(τ, t) ∈ T |τ ≤ t− 1 (5.30)

∑
b∈B

∑
s∈S

∑
∈Nij

∑
i∈Ij

Xmbsnijtte = Pmjtte + Hmjtte∀m ∈ M, j ∈ J , t ∈ T (5.31)

∑
b∈B

∑
s∈S

∑
∈Nij

∑
i∈Ij

Xmbsnijτte = Pmjτte + Hmjτte − (1− αmτ(t−1))Hmjτ(t−1)e

∀m ∈ M, j ∈ J , (τ, t) ∈ T |τ ≤ t− 1 (5.32)

t

∑
τ=1

Pmjτte = dmjt −Umjte∀m ∈ M, j ∈ J , t ∈ T (5.33)

∑
m∈M

t

∑
τ=1

Hmiτte ≤ hi∀i ∈ I
⋃
J , t ∈ T (5.34)

t

∑
τ=1

Xmbsnijτte ≤ min{wijte, w̄b}Ymbsnijt∀m ∈ M, b ∈ B,

s ∈ S , n ∈ Nij, i ∈ I , j ∈ Ji, t ∈ T (5.35)

t

∑
τ=1

Xmbsnijτte ≤ ρmvbYmbsnijt∀m ∈ M, b ∈ B, s ∈ S ,

n ∈ Nij, i ∈ I , j ∈ Ji, t ∈ T (5.36)

Xmbsnijτte, Hmiτte, Hmjτte, Zmite, Pmjτte, Umjte ∈ R+ (5.37)

Let ϑ = {ϑmite ≥ 0|∀m ∈ M, i ∈ I , t ∈ T , e ∈ E}, κ = {κmite|∀m ∈ M, i ∈

I , t ∈ T , e ∈ E}, ζ = {ζmiτte|∀m ∈ M, i ∈ I , (τ, t) ∈ T |τ ≤ t − 1, e ∈ E},

ε = {εmjte|∀m ∈ M, j ∈ J , t ∈ T , e ∈ E}, β = {βmjτte|∀m ∈ M, j ∈ J , (τ, t) ∈

T |τ ≤ t − 1, e ∈ E}, χ = {χmjte|∀m ∈ M, j ∈ J , t ∈ T , e ∈ E}, ν = {νite ≥
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0|∀i ∈ I , t ∈ T , e ∈ E}, Γ = {Γjte ≥ 0|∀j ∈ J , t ∈ T , e ∈ E}, ς = {ςmbsnijte ≥

0|∀m ∈ M, b ∈ B, s ∈ S , n ∈ Nij, i ∈ I , j ∈ Ji, t ∈ T , e ∈ E} and Λ = {Λmbsnijte ≥

0|∀m ∈ M, b ∈ B, s ∈ S , n ∈ Nij, i ∈ I , j ∈ Ji, t ∈ T , e ∈ E} be the vector of the

dual variables associated with constraints (5.28)-(5.36). We present the dual of the

primal subproblem for each scenario e ∈ E, referred to as [DSP]e, as follows:

[DSP]e := Maximize ∑
t∈T

∑
m∈M

(
∑
j∈J

dmjtχmjte −∑
i∈I

φmiteϑmite − ∑
b∈B

∑
s∈S

∑
n∈Nij

∑
j∈J

∑
i∈I

(
min(wijte, b)Ŷmbsnijtςmbsnijte + ρmvbŶmbsnijtΛmbsnijte

))
− ∑

t∈T

(
∑
i∈I

hiνite

+ ∑
j∈J

hjΓjte

)
(5.38)

Subject to

−κmite − νite ≤ hmitt ∀m ∈ M, i ∈ I , t ∈ T (5.39)

−κmite + (1− αmτ(t+1))ζmiτ(t+1)e − νite ≤ hmiτt ∀m ∈ M, i ∈ I ,

(τ, t) ∈ T |τ = t− 1 (5.40)

(1− αmτ(t+1))ζmiτ(t+1)e − ζmiτte − νite ≤ hmiτt ∀m ∈ M, i ∈ I ,

(τ, t) ∈ T |τ < t− 1 (5.41)

−εmjte − Γjte ≤ hmjtt ∀m ∈ M, j ∈ J , t ∈ T(5.42)

−εmjte + (1− αmτ(t+1))βmjτ(t+1)e − Γjte ≤ hmjτt ∀m ∈ M, j ∈ J ,

(τ, t) ∈ T |τ = t− 1 (5.43)

(1− αmτ(t+1))βmjτ(t+1)e − βmjτte − Γjte ≤ hmjτt ∀m ∈ M, j ∈ J ,

(τ, t) ∈ T |τ < t− 1 (5.44)
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−ζmiτte + βmjτte − ςmbsnijte −Λmbsnijte ≤ cmbsnijτt ∀m ∈ M, b ∈ B, s ∈ S , n ∈ Nij,

i ∈ I , j ∈ Ji, (τ, t) ∈ T |τ ≤ t− 1 (5.45)

−κmite + εmjte − ςmbsnijte ≤ cmbsnijtt∀m ∈ M, b ∈ B, s ∈ S , n ∈ Nij,

i ∈ I , j ∈ Ji, t ∈ T (5.46)

−ϑmite + κmite ≤ γmit ∀m ∈ M, i ∈ I , t ∈ T (5.47)

χmjte ≤ πmjt ∀m ∈ M, j ∈ J , t ∈ T (5.48)

−βmjτte + χmjte ≤ 0∀m ∈ M, j ∈ J ,

(τ, t) ∈ T |τ ≤ t− 1 (5.49)

−εmjte + χmjte ≤ 0∀m ∈ M, j ∈ J , t ∈ T (5.50)

ϑmite, νite, Γjte, ςmbsnijte ∈ R+ (5.51)

κmite, ζmiτte, εmjte, βmjτte, χmjte ∈ R (5.52)

Now, we introduce an additional free variable Θ to the underlying Benders refor-

mulation and define the following Benders Master problem [MP]:

[MP]Minimize
Y,Θ

∑
t∈T

∑
s∈S

∑
n∈Nij

∑
i∈I

∑
j∈Ji

(
ψstYsnijt + ∑

m∈M
∑
b∈B

ηmbtYmbsnijt

)
+ Θ (5.53)

Subject to:
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Θ ≥ ∑
e∈E

∑
t∈T

pe

(
∑

m∈M
∑
j∈J

dmjtχmjte − ∑
m∈M

∑
i∈I

φmiteϑmite − ∑
m∈M

∑
i∈I

hiνite

− ∑
m∈M

∑
j∈J

hjΓjte − ∑
m∈M

∑
b∈B

∑
s∈S

∑
n∈Nij

∑
j∈J

∑
i∈I

(
min(wijte, b)Ŷmbsnijtςmbsnijte +

ρmvbŶmbsnijtΛmbsnijte

))
(ϑ, κ, ζ, ε, β, χ, ν, Γ, ς, Λ) ∈ PD (5.54)

∑
m∈M

Ymbsnijt ≤ 1∀b ∈ B, s ∈ S , n ∈ Nij, i ∈ I ,

j ∈ Ji, t ∈ T (5.55)

δsYsnijt ≤ ∑
m∈M

∑
b∈B

Ymbsnijt ≤ δsYsnijt∀s ∈ S , n ∈ Nij, i ∈ I ,

j ∈ Ji, t ∈ T (5.56)

∑
m∈M

∑
b∈B

∑
s∈S

∑
n∈Nij

∑
j∈J

Ymbsnijt ≤ θit∀i ∈ I , t ∈ T (5.57)

∑
n∈Nij

∑
j∈Ji

Ysnijt ≤ asit∀s ∈ S , i ∈ I , t ∈ T (5.58)

∑
m∈M

∑
s∈S

∑
n∈Nij

Ymbsnijt ≤ abit∀b ∈ B, i ∈ I , j ∈ Ji, t ∈ T(5.59)

∑
m∈M

∑
b∈B

(tl + tu)Ymbsnijt +

(
dij

vst
+ ∆lij

)
Ysnijt ≤ tij∀n ∈ Nij, s ∈ S , i ∈ I ,

j ∈ Ji, t ∈ T (5.60)

∑
S∈S

∑
n∈Nij

Ysnijt ≤ τijt∀i ∈ I , j ∈ Ji, t ∈ T (5.61)

∑
S∈S

Ysnijt ≤ 1∀n ∈ Nij, i ∈ I , j ∈ Ji, t ∈ T(5.62)

Ymbsnijt ∈ {0, 1}∀m ∈ M, b ∈ B, s ∈ S , n ∈ Nij, i ∈ I , j ∈ Ji, t ∈ T (5.63)

Ysnijt ∈ {0, 1}∀s ∈ S , n ∈ Nij, i ∈ I , j ∈ Ji, t ∈ T (5.64)
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Constraints (5.54) are referred to as optimality cut constraints where PD is the

set of extreme points in the feasible region of [DSP] and pe is the probability of any

specific scenario e ∈ E (pe =
1
E ). The objective function value of [DSP] bounds free

variable Θ from above i.e.,

Θ ≥ ∑
e∈E

∑
t∈T

pe

(
∑

m∈M
∑
j∈J

dmjtχmjte − ∑
m∈M

∑
i∈I

φmiteϑmite − ∑
m∈M

∑
i∈I

hiνite

− ∑
m∈M

∑
j∈J

hjΓjte − ∑
m∈M

∑
b∈B

∑
s∈S

∑
n∈Nij

∑
j∈J

∑
i∈I

(
min(wijte, b)Ŷmbsnijtςmbsnijte

+ρmvbŶmbsnijtΛmbsnijte

))
(ϑ, κ, ζ, ε, β, χ, ν, Γ, ς, Λ) ∈ PD (5.65)

In problem (5.27), constraints (5.33) ensure that for any feasible solution of [MP], Ŷ,

the primal subproblems SPe(X, H, U, Z|Ŷ1, Ŷ2
) will always remain feasible. There-

fore, we do not add any feasibility cut to [MP]. Moreover, the parameters hmiτt, hmjτt,

cmbsnijτt, γmit and πmjt are finite, which implies that any feasible solution of primal

subproblems must be bounded and based on the strong duality theory, the dual

subproblems [DSP] will also remain feasible and bounded. Master problem [MP]

contains large number of optimality constraints (5.54) that makes it difficult to

solve. To overcome this issue, we solve a restricted master problem [RMP] in which

the set PD is replaced with P r
D, i.e., P r

D ⊂ PD, and the size of P r
D increases with

each iteration r. The overall algorithm is outlined below:

Let UBr and LBr be an upper and lower bound of the original problem [PIM]

obtained in the rth iteration of Benders decomposition algorithm. Let, zr
MAS =

∑s∈S ∑n∈Nij ∑i∈I ∑j∈Ji ∑t∈T

(
ψstYsnijt + ∑m∈M∑b∈B ηmbtYmbsnijt

)
and let P r

D be
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the set of extreme points at iteration r. Basic Benders decomposition algorithm it-

eratively solves [RMP] to obtain the values of {Yr
snijt}s∈S ,n∈Nij,i∈I ,j∈Ji,t∈T , {Yr

mbsnijt}

m∈M,b∈B,s∈S ,n∈Nij,i∈I ,j∈Ji,t∈T , and zr
MAS. The objective function value of [RMP],

zr
MP, provides a valid lower bound for the original problem [PIM]. Next, the the

dual subproblem [DSP] is solved with the fixed values of {Ŷr
snijt} and {Ŷr

mbsnijt}.

At each iteration r, the solution of the first-stage decision values zr
MAS and objec-

tive function value of subproblem (zr
SUB) provides a valid upper bound for the

original problem [PIM]. The algorithm terminates if the obtained gap between the

upper and lower bounds falls below a pre-specified threshold limit ε; otherwise

P r
D is updated and the optimality cut (5.54) is added to [RMP], if violated. The

pseudo-code of algorithm is provided in Algorithm 1.

5.4.3 Enhancement of Benders Decomposition Algorithm

This section introduces a number of techniques that can enhance the compu-

tational performance of the basic Benders decomposition algorithm. These tech-

niques include addition of problem-specific valid inequalities, different variants

of multi-cut and mean-value cut, pareto-optimal cut, knapsack inequalities, and a

few simple heuristic improvements (e.g., warm start). These techniques helps to

generate a high quality feasible solution of problem [PIM] in a timely fashion.

5.4.3.1 Valid inequalities

In each iteration of Benders decomposition algorithm, we add valid inequal-

ities to the relaxed master problem [RMP]. These valid inequalities are derived
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by utilizing the special structure of problem [PIM] and can be used to accelerate

the performance of the overall Benders decomposition algorithm. Following set

of valid inequalities are proposed:

Problem specific valid inequalities:

• Surrogate constraints (5.66) are proposed which provide a lower bound on the
required number of barges to satisfy commodity demand m ∈ M at time
period t ∈ T . The value of σ can be varied between 0.0 and 1.0 and when
σ = 1.0, it ensures that all demand must be satisfied through the inland
waterway transportation network.

∑
b∈B

∑
s∈S

∑
n∈Nij

∑
i∈I

∑
j∈Ji

Ymbsnijtwb ≥ ∑
j∈J

σdmjt ∀m ∈ M, t ∈ T (5.66)

• While choosing between multiple barges of similar capacities, symmetries
may arise that will result in elongated search times for the solver. Therefore,
we add lexicographic ordering constraints (5.67) and (5.68) to set priorities on
barge selection. Such priorities help to break the duplications caused by the
barge selection symmetry and accelerate the performance of the branch-and-
bound process.

Y1,b−1,snijt ≥ Y1bsijt∀b ∈ B \ 1, s ∈ S , n ∈ Nij, i ∈ I , j ∈ J , t ∈ T(5.67)
m

∑
p=1

2(m−p)Yp,b−1,snijt ≥
m

∑
p=1

2(m−p)Ypbsijt∀m ∈ M, b ∈ B \ 1, s ∈ S , n ∈ Nij,

i ∈ I , j ∈ J , t ∈ T (5.68)

• Symmetries may also arise while selecting towboats. Let S ′e be the subset of
same typed towboats, i.e., S ′e ⊂ S and s′e ⊂ S ′e where s′e represents a set of
non-decreasing order of the members belongs to S ′e. Similar to constraints
(5.67) and (5.68), lexicographic ordering constraints (5.69) and (5.70) are ap-
plied for each S ′e to determine the priority in utilizing towboats of the same
type.

Ys′e−1,nijt ≥ Ys′e,nijt∀s′e ∈ S ′e \ {1}, n ∈ Nij, i ∈ I , j ∈ J , t ∈ T (5.69)

ψs′e−1,tYs′e−1,nijt ≥ ψs′e,tYs′e,ijt∀s′e ∈ S ′e \ {1}, n ∈ Nij, i ∈ I , j ∈ J , t ∈ T(5.70)

• Constraints (5.71) and (5.72) generate a lower bound on the required barge
usage for satisfy the demand between time interval [t1, t2]. If the cumulative
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demand over period [t1, t2] is greater than or equal to the maximum possi-
ble inventory held (hj) and initial inventory Hmjτt1 , then at least a certain
number of barges should be used in that specific interval:

∑
b∈B

∑
s∈S

∑
n∈Nij

∑
i∈I

∑
j∈J

t2

∑
t=t1

Ymbsnijt ≥
⌈

∑j∈J ∑t2
t=t1

dmjt −∑j∈J hj

wb

⌉
∀m ∈ M, (t1, t2) ∈ T , t2 ≥ t1 (5.71)

∑
b∈B

∑
s∈S

∑
n∈Nij

∑
i∈I

∑
j∈J

t2

∑
t=t1

Ymbsnijt≥
⌈

∑j∈J ∑t2
t=t1

dmjt −∑j∈J ∑t1
τ=1 Hmjτt1

wb

⌉
∀m ∈ M, (t1, t2) ∈ T , t2 ≥ t1 (5.72)

Lower bounding function: Lower bounding function [112] is another class of valid

inequalities providing useful information about the projected terms of the objec-

tive function of the master problem [RMP]. These valid inequalities can be consid-

ered as an approximated boundary of the recourse cost of scenarios in the master

problem. To obtain lower bounding valid inequalities, we consider a deterministic

version of model [PIM] and obtain its linear relaxation [LBF] for each scenario as

follows:

[LBF(e)] v(φmite, wijte) := Minimize
X,H,U,Z

∑
t∈T

∑
m∈M

(
∑

i∈I ⋃J
t

∑
τ=1

hmiτtHmiτte + ∑
i∈I

γmitZmite

+ ∑
j∈J

πmjtUmjte + ∑
b∈B

∑
s∈S

∑
n∈Nij

∑
i∈I

∑
j∈Ji

t

∑
τ=1

(cmbsnijτt +
ψst

δswb
+

ηmbt
wb

)Xmbsnijτte

)
(5.73)

Subject to
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Zmite ≤ ϕmite∀m ∈ M, i ∈ I , t ∈ T (5.74)

Zmite = ∑
b∈B

∑
s∈S

∑
n∈Nij

∑
j∈Ji

Xmbsnijtte + Hmitte

∀m ∈ M, i ∈ I , t ∈ T (5.75)

(1− αmτ(t−1))Hmiτ(t−1)e = ∑
b∈B

∑
s∈S

∑
n∈Nij

∑
j∈Ji

Xmbsnijτte + Hmiτte ∀m ∈ M, i ∈ I

(τ, t) ∈ T |τ ≤ t− 1 (5.76)

∑
b∈B

∑
s∈S

∑
∈Nij

∑
i∈Ij

Xmbsnijtte = Pmjtte + Hmjtte∀m ∈ M, j ∈ J , t ∈ T (5.77)

∑
b∈B

∑
s∈S

∑
∈Nij

∑
i∈Ij

Xmbsnijτte = Pmjτte + Hmjτte − (1− αmτ(t−1))Hmjτ(t−1)e

∀m ∈ M, j ∈ J , (τ, t) ∈ T |τ ≤ t− 1 (5.78)

t

∑
τ=1

Pmjτte = dmjt −Umjte∀m ∈ M, j ∈ J , t ∈ T (5.79)

∑
m∈M

t

∑
τ=1

Hmiτte ≤ hi∀i ∈ I
⋃
J , t ∈ T (5.80)

t

∑
τ=1

Xmbsnijτte ≤ min{wijte, w̄b} ∀m ∈ M, b ∈ B, s ∈ S , n ∈ Nij, i ∈ I , j ∈ Ji, t ∈ T(5.81)

t

∑
τ=1

Xmbsnijτte ≤ ρmvb ∀m ∈ M, b ∈ B, s ∈ S , n ∈ Nij, i ∈ I , j ∈ Ji, t ∈ T (5.82)

Xmbsnijτte, Hmiτte, Hmjτte, Zmite, Pmjτte, Umjte ∈ R+ (5.83)

Theorem 1

Let Xmbsijτte, Hmiτte, Hmjτte, Zmite, Pmjτte, Umjte, Ysnijt, and Ymbsnijt be the optimal so-

lution of problem [LBF(e)]; ϑmit and ςmbsnijt be the dual variables associated with

constraints (5.74) and (5.81). Then, equation (5.84) presented below is a valid cut

for the Benders master problem [RMP]:
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Θe ≥ ∑
t∈T

∑
m∈M

(
∑

i∈I ⋃J
t

∑
τ=1

hmiτtHmiτte + ∑
i∈I

γmitZmite + ∑
j∈J

πmjtUmjtω + ∑
b∈B

∑
s∈S

∑
n∈Nij

∑
(i,j)∈(I ,J )

t

∑
τ=1

cmbsnijτtXmbsijτte

)
+ ∑

s∈S
∑

n∈Nij

∑
i∈I

∑
j∈Ji

∑
t∈T

(
ψst(Ysnijt −Ysnijt) + ∑

m∈M

∑
b∈B

ηmbt(Ymbsnijt −Ymbsnijt)

)
− ∑

m∈M
∑
i∈I

∑
t∈T

α1(φ
max
mit − φmite)ϑmit − ∑

m∈M
∑
b∈B

∑
s∈S

∑
n∈Nij

∑
i∈I

∑
j∈Ji

∑
t∈T

α2(w̄max
ijt − w̄ijte)ςmbsnijt ∀e ∈ E(5.84)

Proof:

[LBF(e)] is a linear relaxation of deterministic model [PMI] for scenario (e), thus

it provides a lower bound on its optimal cost. Therefore, at any optimal solution,

following the ‘wait and see” and “here and now” solution properties of stochastic

programming problem [16], following relation holds among the Benders equiva-

lent reformulation of model [PMI] and the objective function of model [LBF(e)]:

∑
s∈S

∑
n∈Nij

∑
i∈I

∑
j∈Ji

∑
t∈T

(
ψstYsnijt + ∑

m∈M
∑
b∈B

ηmbtYmbsnijt

)
+ Θe ≥ ∑

t∈T
∑

m∈M

(
∑

i∈I ⋃J
t

∑
τ=1

hmiτtHmiτte + ∑
i∈I

γmitZmite + ∑
j∈J

πmjtUmjte + ∑
b∈B

∑
s∈S

∑
n∈Nij

∑
(i,j)∈(I ,J )

t

∑
τ=1

(cmbsnijτt +
ψst

δswb
+

ηmbt
wb

)Xmbsijτte

)

Now we have the following variable transformations:

Ymbsnijt ≈
∑t

τ=1 Xmbsnijτte

wb
∀m ∈ M, b ∈ B, s ∈ S , n ∈ Niji ∈ I , j ∈ Ji, t ∈ T

Ysnijt ≈
∑t

τ=1 ∑m∈M∑b∈B Xmbsnijτte

δswb
∀s ∈ S , n ∈ Niji ∈ I , j ∈ Ji, t ∈ T
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These translates to the following equations:

∑
s∈S

∑
n∈Nij

∑
i∈I

∑
j∈Ji

∑
t∈T

(
ψstYsnijt + ∑

m∈M
∑
b∈B

ηmbtYmbsnijt

)
+ Θe ≥ ∑

t∈T
∑

m∈M

(
∑

i∈I ⋃J
t

∑
τ=1

hmiτtHmiτte + ∑
i∈I

γmitZmite + ∑
j∈J

πmjtUmjte + ∑
b∈B

∑
s∈S

∑
n∈Nij

∑
(i,j)∈(I ,J )

(

ψstYmbsnijt +
t

∑
τ=1

cmbsnijτtXmbsijτte

))
+ ∑

s∈S
∑

n∈Nij

∑
(i,j)∈(I ,J )

∑
t∈T

ηmbtYsnijt

⇒Θe ≥ ∑
t∈T

∑
m∈M

(
∑

i∈I ⋃J
t

∑
τ=1

hmiτtHmiτte + ∑
i∈I

γmitZmite + ∑
j∈J

πmjtUmjte + ∑
b∈B

∑
s∈S

∑
n∈Nij

∑
(i,j)∈(I ,J )

t

∑
τ=1

cmbsnijτtXmbsijτte

)
+ ∑

s∈S
∑

n∈Nij

∑
i∈I

∑
j∈Ji

∑
t∈T

(
ψst(Ysnijt −Ysnijt)

+ ∑
m∈M

∑
b∈B

ηmbt(Ymbsnijt −Ymbsnijt)

)
(5.85)

Solving a [LBF] for each scenario may not computationally be interesting. For

this reason, we propose to solve only a single problem with maximum supply and

water level, i.e., φmax
mit = maxe∈E{φmite}m∈M,i∈I ,t∈T , wmax

ijt = maxe∈E{wijte}i∈I ,j∈J ,t∈T .

The solution of this auxiliary problem provides a valid lower bound for all sce-

nario subproblems. However, The obtained bound can be further improved for

each scenario.

Let ϑmit, ςmbsnijt be the dual variables associated with the stochastic constraints;

∆1 and ∆2 indicate the set of alternative optimal dual solutions for ϑ and ς, respec-

tively; and 0 ≤ α1, α2 ≤ 0.5. Functions v(φmitω) and v(wijtw) are piece-wise linear

in φ and w. Based on sensitivity analysis, we have:

v(φmax − φ̃) ≥ v(φmax)− α1maxϑ∈∆ϑTφ̃ ≥ v(φmax)− α1ϑTφ̃

v(w̄max − ˜̄w) ≥ v(w̄max)− α2maxς∈∆2ςT ˜̄w ≥ v(w̄max)− α2ςT ˜̄w
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Let φ̃ = φmax − φω and ˜̄w = w̄max − w̄ω, therefore, we have:

Θe ≥ ∑
t∈T

∑
m∈M

(
∑

i∈I ⋃J
t

∑
τ=1

hmiτtHmiτte + ∑
i∈I

γmitZmite + ∑
j∈J

πmjtUmjte + ∑
b∈B

∑
s∈S

∑
n∈Nij

∑
(i,j)∈(I ,J )

t

∑
τ=1

cmbsnijτtXmbsijτte

)
+ ∑

s∈S
∑

n∈Nij

∑
i∈I

∑
j∈Ji

∑
t∈T

(
ψst(Ysnijt −Ysnijt)

+ ∑
m∈M

∑
b∈B

ηmbt(Ymbsnijt −Ymbsnijt)

)
− ∑

m∈M
∑
i∈I

∑
t∈T

α1(φ
max
mit − φmite)ϑmit

− ∑
m∈M

∑
b∈B

∑
s∈S

∑
n∈Nij

∑
i∈I

∑
j∈Ji

∑
t∈T

α2(w̄max
ijt − w̄ijte)ςmbsnijt ∀e ∈ E (5.86)

This confirms the validity of the proposed inequality (5.84).

Cutset inequalities:

In model [PIM], the set of nodes and arcs are denoted by sets D and A, respec-

tively, where A includes all paths that connects the origin and destination ports.

Based on the feasibility requirements of the problem at hand, sufficient capacity

should be installed across any partition of the network including the set of tow-

boats and barges to support the commodity flow. Let, D ⊂ D be a nonempty

subset of the the node set D and D be its complement, i.e., D = D \ D. The corre-

sponding cutset is defined as (D, D) = {aij ∈ A|i ∈ D, j ∈ D}. Let Mt(D, D) =

{m ∈ M|∑i∈D ∑ω∈Ω φmitω ≥ 0, ∑j∈D dmjt ≥ 0} be the associated commodity

subset for each time period t. The maximum flow over this cutset is defined as

dmax
t(D,D)

= {∑m∈Mt(D,D) ∑j∈D dmjt}. Cutset (D, D) is a valid cutset if dmax
t(D,D)

> 0.

Now using parameters τijt, δs, and wb, the capacity of each arc in a specific cutset
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(D, D) for time period t can be approximated as ut,aij = {τijt × δs × wb|i ∈ D, j ∈

D}.

Definition 1

Ct ⊆ (D, D) is a cover if the total capacity of the arcs in (D, D) \ Ct does not

support (cover) the flow of demand at time period t, i.e., ∑aij∈(D,D)\C ut,aij < dmax
t(D,D)

.

Definition 2

A cover set Ct is minimal if opening any arc in Ct is sufficient to cover the demand,

i.e., ∑aij∈(D,D)\C ut,aij + ut,qij ≥ dmax
t(D,D)

, ∀qij ∈ Ct.

Let yaij stands for the capacity of arc aij in any cover set Ct ⊆ (D, D). The cover

inequality can be defined as ∑aij∈Ct yaij ≥ 1 which forces to open atleast one arc

from coverset Ct to meet the flow requirements. Considering the structure of prob-

lem [PIM], to separate this set of inequalities, we adopt the procedure proposed

by Chouman et al. [23]. For each arc in (D, D) we define three new parameters

Ymax
t,aij

= {τijt × δs|i ∈ D, j ∈ D}, YRE
t,aij

, and Yt,aij = {YRE
t,aij

/Ymax
t,aij
|i ∈ D, j ∈ D}.

The first parameter represents the maximum number of barges that can be used

in a given arc aij of cutset (D, D) at time period t. Parameter YRE
t,aij

reports the total

number of barges selected in the current solution for the same arc aij. The third

parameter represents the ratio of two previous parameters. Let C1,t and C0,t be

two subsets of arcs in cutset (D, D) at time period t for which Yt,aij ≥ 1− εci, and

Yt,aij ≤ εci, respectively. Parameter εci is a small positive number. For each time
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period t, subsets C1,t and C0,t in cutset (D, D) are determined in such a way that

they satisfy following condition:

∑
a∈(D,D)\(C1,t∪C0,t)

ut,a ≥ dmax
t,(D,D)

− ∑
a∈C1,t

ut,a > 0 ∀t ∈ T

We used OpenCloseArcs algorithm (Algorithm 2) to determine C1,t and C0,t for

the current solution of the model, i.e., Ŷmbsnijt.

Algorithm 2 uses Ut and Dt to represent the residual capacity and residual

demand for each time period. Given the current solution Ŷmbsnijt, this algorithm

attempts to close an arc with a small Yt,aij (as measured by εci) so that the resid-

ual capacity after closing that arc will still cover the residual demand Dt, i.e.,

Ut − ut,aij ≥ Dt. Similarly, the algorithm tries to open an arc with large Yt,aij (as

measured by 1− εci) and such that there is still some residual demand to cover.

To obtain a violated cover inequality (CI) for cutset (D, D) in each time period t, if

there is any, following separation problem needs to be solved:

Zsep(t) := min ∑
aij∈(D,D)\(C1,t∪C0,t)

Yt,aij Zaij (5.87)

s.t : ∑
aij∈(D,D)\(C1,t∪C0,t)

ut,aij Zaij ≥ ∑
aij∈(D,D)\C0,t

ut,aij − dmax
t,(D,D)

Zaij ∈ {0, 1} ∀aij ∈ (D, D) \ (C1,t ∪ C0,t)

For each time period t, solving model (5.87) provides a cover set Ct for the

restricted cutset (D, D) \ (C1,t ∪ C0,t). Note that, binary variable Zaij takes the

value one if the arc aij is selected to be in the cover Ct. Since problem (5.87) is

frequently solved, the solution time for each time period and each cutset can be

quite time consuming. Therefore, we use a heuristic approach [23] the basic idea
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of which is to exclude the arcs with large Yt,aij as much as possible from the set

(D, D) \ (C1,t ∪ C0,t). This increases the chance of finding a violated inequality.

Following this approach, arcs are considered in a non-decreasing order of the Yt,aij .

Once a violated CI is obtained, we can easily derive a minimal cover set by remov-

ing as many arcs as possible with large Yt,aij to meet the required condition,i.e.,

∑aij∈Ct Yt,aij < 1. Once the cover set for cutset (D, D) for each time period t is

obtained, we should open at least one arc from that cover. However, this does not

necessarily mean that the capacity of the given arc should be used at full. There-

fore, we define multiplier R f t
aij

as a reducing factor of maximum barge capacity

assigned to an arc. Obtaining the approximated number of barges we can form

the corresponding CI as follows:

R f t
aij

=
1
2

(∑m∈M(D,D) dmjt

dmax
t(D,D)

+
1

dij ∑j′∈D
1

dij′

)
∀t ∈ T , aij ∈ Ct

Yap
t,aij

= R f t
aij

Ymax
t,aij

∀t ∈ T , aij ∈ Ct

∑
m∈M

∑
b∈B

∑
s∈S

∑
n∈Nij

∑
aij∈Ct

Ymbsnaijt ≥ min
aij∈Ct
{Yap

t,aij
} ∀t ∈ T (5.88)

Another family cutset inequalities is known as minimum cardinality inequalities.

The basic idea of these inequalities is to find the minimum number of arcs in a

cutset, the capacity of which are needed to cover the maximum demand of that

cut set, i.e., dmax
t(D,D)

. Let C1,t represent the set of open arcs in cutset (D, D) at time

period t and C0,t be the set of closed arcs as obtained for the cover inequalities.
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The arcs in (D, D) \ (C1,t ∪ C0,t) are ordered in a decreasing manner, i.e., ut,aij ≥

ut,(a+1)ij
∀aij ∈ (D, D) \ (C1,t ∪C0,t). Finally, the least number of arcs the capacities

of which are required to ensure flow in the given cutset is obtained as follows:

lt,(D,D)\(C1,t∪C0,t)
= max

{
h : ∑

aij=1,...,h
ut,aij < dmax

(D,D)\(C1,t∪C0,t)

}
+ 1 ∀t ∈ T (5.89)

Finding the value of lt,(D,D)\(C1,t∪C0,t)
for each cutset at each time period, we get

the information that in how many arcs at minimum we would have flow of barges.

However, this does not signify that all capacity of the arcs need to translate the

result to the problem at hand, to do so we make use of the introduced reducing

factor for the cover inequalities as follows:

∑
m∈M

∑
b∈B

∑
s∈S

∑
n∈Nij

∑
aij∈(D,D)\(C1,t∪C0,t)

Ymbsnaijt ≥ lt,(D,D)\(C1,t∪C0,t)
min
aij∈Ct
{Yap

t,aij
}∀t ∈ T (5.90)

5.4.3.2 Multi-cuts

Benders decomposition algorithm can be enhanced further by adding two types

of multi-cuts, Type-1 Benders cut and Type-2 Benders cut. The application of these

cuts are discussed below:

Type-1 Benders cut: The first cut in this class is the standard multi-cut approach.

In this approach, instead of adding one optimality cut at a time as in the case of

standard benders decomposition algorithm, we add scenario specific cuts one for
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each scenario based subproblem [17]. Following this procedure, the optimality cut

constraint (5.54) can now be modified as follows:

Θe ≥ ∑
t∈T

∑
m∈M

(
∑
j∈J

dmjtχmjte −∑
i∈I

φmiteϑmite − ∑
b∈B

∑
s∈S

∑
n∈Nij

∑
j∈J

∑
i∈I

(
min(wijte, wb)

Ŷmbsnijtςmbsnijte + ρmvbŶmbsnijtΛmbsnijte

))
− ∑

t∈T

(
∑
i∈I

hiνite + ∑
j∈J

hjΓjte

)
∀e ∈ E, (ϑ, κ, ζ, ε, β, χ, ν, Γ, ς, Λ) ∈ PD (5.91)

The only difference between Type-1 Benders cut and the original optimality

cut (5.54) is that the variable Θ in (5.54) is now replaced with Θe. The objective

function of the Benders master problem [MP] is modified as follows:

Minimize
Y,Θ

{
∑
t∈T

∑
s∈S

∑
n∈Nij

∑
i∈I

∑
j∈Ji

(
ψstYsnijt + ∑

m∈M
∑
b∈B

ηmbtYmbsnijt

)
+ ∑

e∈E
peΘe

}
(5.92)

With the addition of Type-1 Benders cut, the Benders decomposition algorithm is

expected to take fewer iterations to reach the desired optimality gap. In contrary,

the presence of large number of optimality cuts in the Benders master problem re-

quires longer time to solve. To alleviate this challenge, scenario bundling technique

can be applied which is introduced in Type-2 Benders cut.

Type-2 Benders cut: The performance of the Benders decomposition algorithm

can further be improved by applying scenario bundling technique to it [46]. In

this technique rather than defining subproblems for each scenario e, we define

each subproblem for a scenario bundle consisting of a number of scenarios. For

instance, bundling can be done by considering different supply and waterlevel

scenarios, i.e., high, medium, and low. Let |E| individual scenarios are grouped
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into |L| bundles where each bundle is specified by l, i.e., l ∈ L and pl = ∑e∈l pe.

Model [DSPe] is now solved for each scenario bundle l ∈ L and optimality cut is

defined for each bundle l as follows:

Θl ≥∑
e∈l

pe

(
∑
t∈T

∑
m∈M

(
∑
j∈J

dmjtχmjte −∑
i∈I

φmiteϑmite − ∑
b∈B

∑
s∈S

∑
n∈Nij

∑
j∈J

∑
i∈I

(
min(wijte,

wb)Ŷmbsnijtςmbsnijte + ρmvbŶmbsnijtΛmbsnijte

))
− ∑

t∈T

(
∑
i∈I

hiνite + ∑
j∈J

hjΓjte

))
∀l ∈ L, (ϑ, κ, ζ, ε, β, χ, ν, Γ, ς, Λ) ∈ PD (5.93)

The benders master problem [MP] objective is modified as follows:

Minimize
Y

{
∑
t∈T

∑
s∈S

∑
n∈Nij

∑
i∈I

∑
j∈Ji

(
ψstYsnijt + ∑

m∈M
∑
b∈B

ηmbtYmbsnijt

)
+ ∑

l∈L
plΘl

}
(5.94)

5.4.3.3 Pareto-optimal cuts

Addition of Pareto-optimal cuts can significantly improve the convergence of

the Benders decomposition algorithm. These cuts are generated at each iteration

in such a way that the cuts will be stronger and dominate over the previously gen-

erated cuts [74]. Constructing these cuts are overly relied on the solution obtained

from the dual subproblem. If the primal subproblem shows degeneracy, multiple

optimal solutions are obtaned from its dual, each of which can generate an opti-

mality cut of particular strength [124]. Thus, selecting the strongest cut among all

possible cuts is of high importance. Magnanti and Wong [74] explained the idea of

dominance to select the strongest cut. Let YLP be the polyhedron defined by (5.55)-

(5.57), (5.59)-(5.60), and 0 ≤ {Ymbsnijt}m∈M,b∈B,s∈S ,n∈Nij,i∈I ,j∈Ji,t∈T ≤ 1 and PD be

the polyhedron of [DSP].
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Definition 3

An optimality cut corresponding to (ϑ̂, κ̂, ζ̂, ε̂, β̂, χ̂, ν̂, Γ̂, ς̂, Λ̂) ∈ PD dominates or

is stronger than that corresponding to (ϑ, κ, ζ, ε, β, χ, ν, Γ, ς, Λ) ∈ PD if following

relation holds with strict inequality for at least one point Ŷmbsnijt ∈ YLP :

∑
e∈E

pe

(
∑
t∈T

∑
m∈M

(
∑
j∈J

dmjtχ̂mjte −∑
i∈I

φmiteϑ̂mite − ∑
b∈B

∑
s∈S

∑
n∈Nij

∑
j∈J

∑
i∈I

(
min(wijte, wb)

Ŷmbsnijtς̂mbsnijte + ρmvbŶmbsnijtΛ̂mbsnijte

))
− ∑

t∈T

(
∑
i∈I

hiν̂ite + ∑
j∈J

hjΓ̂jte

))
≥ ∑

e∈E
pe

(

∑
t∈T

∑
m∈M

(
∑
j∈J

dmjtχmjte −∑
i∈I

φmiteϑmite − ∑
b∈B

∑
s∈S

∑
n∈Nij

∑
j∈J

∑
i∈I

(
min(wijte, wb)Ŷmbsnijt

ςmbsnijte + ρmvbŶmbsnijtΛmbsnijte

))
− ∑

t∈T

(
∑
i∈I

hiνite + ∑
j∈J

hj − Γjte

))
Ŷmbsnijt ∈ YLP (5.95)

Definition 4

An optimality cut generated with dual solution (ϑ̂, κ̂, ζ̂, ε̂, β̂, χ̂, ν̂, Γ̂, ς̂, Λ̂) ∈ PD is

referred as Pareto-optimal, if it is not dominated by any other cut. Similarly, the

dual solution (ϑ̂, κ̂, ζ̂, ε̂, β̂, χ̂, ν̂, Γ̂, ς̂, Λ̂) is called Pareto-optimal.

Let ri(YLP) denote the relative interior of YLP. Pareto-optimal dual solution can

be extracted by solving an auxiliary problem [DSP(PO)]. Let Y0
mbsnijt ∈ ri(YLP)∀m∈M,

b∈B,s∈S ,n∈Nij,i∈I ,j∈Ji,t∈T be the core point, Ymbsnijt and [DSP]e respectively indicate
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the optimal solution of the master problem and objective function value of dual

subproblem. Problem [DSP(PO)] is formulated as follows:

[DSP(PO)]e := Maximize ∑
t∈T

∑
m∈M

(
∑
j∈J

dmjtχmjte −∑
i∈I

φmiteϑmite − ∑
b∈B

∑
s∈S

∑
n∈Nij

∑
j∈J

∑
i∈I

(
min(wijte, wb)Y0

mbsnijtςmbsnijte + ρmvbY0
mbsnijtΛmbsnijte

))
− ∑

t∈T

(
∑
i∈I

hiνite + ∑
j∈J

hjΓjte

)
(5.96)

subject to (5.39)-(5.52) and

∑
t∈T

∑
m∈M

(
∑
j∈J

dmjtχmjte −∑
i∈I

φmiteϑmite − ∑
b∈B

∑
s∈S

∑
n∈Nij

∑
j∈J

∑
i∈I

(
min(wijte, wb)

Ymbsnijtςmbsnijte + ρmvbYmbsnijtΛmbsnijte

))
− ∑

t∈T

(
∑
i∈I

hiνite + ∑
j∈J

hjΓjte

)
= [DSP]e (5.97)

After solving [DSP]e we obtain [DSP]e which is then used in the auxiliary prob-

lem [DSP(PO)]e and the corresponding Pareto-optimal cut is derived. However,

in this approach, the dependency on the auxiliary problem can have detrimental

effect on the performance of overall algorithm. It doubles number of subprob-

lems needed to be solved in each iteration of benders decomposition algorithm.

Additionally, the presence of equality constraint (5.97) in [DSP(PO)]e makes the

auxiliary problems difficult than solving the regular subproblems.

Equality constraint (5.97) restricts the dual subproblem [DSP]e to the optimal

face of dual polyhedron where all the optimal solutions exist. The objective func-

tion (5.96) attempts to pick a solution among all available alternatives on the op-

timal face which gives the tightest cut as measured from an interior point of the
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master problem. Here we utilize a novel method to decrease the complexity of

auxiliary subproblem. This method is structured based on several definitions from

linear programming theory.

Definition 5

An alternate optimal solution exists if at least one nonbasic variable possesses a

reduced cost of zero.

When we identify that at least one alternate dual optima exists, the best one is

searched to generate the cut by restricting the dual subproblem to the optimal

face. Corollary 1 of linear programming theory states the way of fixing the dual

subproblem to the optimal face.

Corollary 1

Variables with nonzero reduced cost maintain their current value at any alternate

optimal solution.

Proof: Suppose any variable with non zero reduced cost changes its value, this

mandates that the optimal objective value should also be changed. However, this

statement contradicts the definition of alternate optima, therefore, the value of

variables with non zero reduced cost should remain same at any alternative opti-

mal solution.

If the dual value of an active constraint in an optimal solution is nonzero, from

duality theory, the slack variable corresponding to the given constraint is equal

to zero. Therefore, each inequality constraint with nonzero dual value should be

converted into an equality, which is equivalent to fixing the slack variables with
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nonzero reduced cost to zero. Using these definitions, Lemma 1 introduces an

equivalent subproblem to extract Pareto-optimal cuts.

Lemma 1

Let (~ϑ,~κ,~ζ,~ε,~β,~χ,~ν,~Γ,~ς,~Λ) indicate the vector of variables with nonzero reduced

cost derived from solving the [DSP]e problem snd Sl be the slack variable of each

constraint. Then, the solution of

[DSP(RPO)]e := Maximize ∑
t∈T

∑
m∈M

(
∑
j∈J

dmjtχmjte −∑
i∈I

φmiteϑmite − ∑
b∈B

∑
s∈S

∑
n∈Nij

∑
j∈J

∑
i∈I

(
min(wijte, wb)Y0

mbsnijtςmbsnijte + ρmvbY0
mbsnijtΛmbsnijte

))
− ∑

t∈T

(
∑
i∈I

hiνite

+ ∑
j∈J

hjΓjte

)
(5.98)

subject to (5.39)-(5.52) and

(~ϑ,~κ,~ζ,~ε,~β,~χ,~ν,~Γ,~ς,~Λ, ~Sl) = 0 (5.99)

is equivalent to that obtained from the Magnanti-wong problem.

Proof: If there are multiple optimal solutions for a problem, the variables with zero

reduced cost can only change their value not effecting the objective function value.

Hence, if we have multiple optimal solutions for [DSP]e, we want to restrict [DSP]e

to its optimal face and the variables with nonzero reduced cost can be excluded

from the corresponding dual polyhedron by fixing their values to zero.

Equality (5.99) fixes a set of variables with nonzero reduced cost to their current

value (zero). This can be efficiently managed by the state-of-the-art optimization

solvers such as CPLEX and GUROBI.
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5.4.3.4 Mean-value cuts

Mean-value cut was first introduced by Batun et al. [14]. This inequality gen-

erates good lower bounds in the earlier iterations of the Benders decomposition

algorithm which eventually helps to accelerate the convergence of the algorithm.

The authors add a number of inequalities to the Benders master problem by uti-

lizing the primal subproblem defined under the mean-value scenario e. In this

section, we first introduce the primal-based mean-value cut (Type A cut) proposed by

Batun et al [14]. We then extend this cut to generate multiple mean-value cut (Type B

cut) based on the Type-2 Benders cut proposed in section 5.4.3.2. Finally, alternative

approaches to generate single mean-cut (Type C cut) and multiple mean-cut (Type D

cut) utilizing the dual subproblem variables are proposed.

Primal-based mean-value cut

Type A cut: This approach appends a set of primal subproblem constraints to

the [MP] under mean-value scenario e (a scenario comprising of mean values of the

stochastic parameters). Additionally, to generate high quality feasible solutions

during the early iterations of the Benders decomposition algorithm, an inequality

is generated to strengthen the lower bound of the free variable Θ. In this purpose,

following additional parameters and decision variables are introduced.

Auxiliary parameters:

• φ̃mit : mean supply availability of product m ∈ M in port i ∈ I at time
period t ∈ T
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• w̃ijt : mean allowable load that can be carried between the channel (i, j) ∈
(I ,J ) at time period t ∈ T

Auxiliary variables:

• Z̃mit: mean amount of commodities of type m ∈ M processed at port i ∈ I
at time period t ∈ T

• X̃mbsnijτt: amount of commodities of type m ∈ M that were purchased at
time period τ and transported at time period t ∈ T using barge b ∈ B of
towboat s ∈ S of trip n ∈ Nij along arc (i, j) ∈ (I ,J ) , where (τ, t) ∈ T |τ ≤ t

• H̃miτt: amount of commodities of type m ∈ M stored in port i ∈ I ⋃J
between time period τ and t , where (τ, t) ∈ T |τ ≤ t

• Ũmjt: amount of commodities of type m ∈ M shortage in destination port
j ∈ J at time period t ∈ T

• P̃mjτt : amount of demand of commodities of type m ∈ M satisfied in desti-
nation port j ∈ J with commodities purchased at time period τ and trans-
ported at time period t ∈ T , where (τ, t) ∈ T |τ ≤ t

The following constraints are now added to the master problem [MP] :
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Z̃mit ≤ ϕ̃mit∀m ∈ M, i ∈ I , t ∈ T (5.100)

Z̃mit − ∑
b∈B

∑
s∈S

∑
n∈Nij

∑
j∈Ji

X̃mbsnijtt = H̃mitt∀m ∈ M, i ∈ I , t ∈ T (5.101)

(1− αmτ(t−1))H̃miτ(t−1) = ∑
b∈B

∑
s∈S

∑
n∈Nij

∑
j∈Ji

X̃mbsnijτtH̃miτt

∀m ∈ M, i ∈ I , (τ, t) ∈ T |τ ≤ t− 1(5.102)

∑
b∈B

∑
s∈S

∑
∈Nij

∑
i∈Ij

X̃mbsnijtt = P̃mjtt + H̃mjtt∀m ∈ M, j ∈ J , t ∈ T (5.103)

∑
b∈B

∑
s∈S

∑
∈Nij

∑
i∈Ij

X̃mbsnijτt = P̃mjτt + H̃mjτt − (1− αmτ(t−1))H̃mjτ(t−1)

∀m ∈ M, j ∈ J , (τ, t) ∈ T |τ ≤ t− 1(5.104)

t

∑
τ=1

P̃mjτt = dmjt − Ũmjt∀m ∈ M, j ∈ J , t ∈ T (5.105)

∑
m∈M

t

∑
τ=1

H̃miτt ≤ hi∀i ∈ I
⋃
J , t ∈ T (5.106)

t

∑
τ=1

X̃mbsnijτt ≤ min{w̃ijt, w̄b}Ymbsnijt∀m ∈ M, b ∈ B,

s ∈ S , n ∈ Nij, i ∈ I , j ∈ Ji, t ∈ T (5.107)

t

∑
τ=1

X̃mbsnijτt ≤ ρmvbYmbsnijt∀m ∈ M, b ∈ B, s ∈ S ,

n ∈ Nij, i ∈ I , j ∈ Ji, t ∈ T (5.108)

X̃mbsnijτt, H̃miτt, H̃mjτt, Z̃mit, P̃mjτt, Ũmjt ∈ R+ (5.109)
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In addition to the constrains discussed above, the following lower-bounding

cut is also added to [MP]:

Θ ≥ ∑
t∈T

∑
m∈M

(
∑

i∈I ⋃J
t

∑
τ=1

hmiτtH̃miτt + ∑
b∈B

∑
s∈S

∑
n∈Nij

∑
(i,j)∈(I ,J )

t

∑
τ=1

cmbsnijτtX̃mbsnijτt

+ ∑
i∈I

γmitZ̃mit + ∑
j∈J

πmjtŨmjt

)
(5.110)

Type B cut: This approach appends a set of primal subproblem constraints to [MP]

under mean scenario bundle el; l ∈ L. Further, free variable Θ is now modified as

Θl which allows adding multiple cuts, one for each scenario bundle l ∈ L. To

generate the primal-based multiple mean-value cut, following additional parameters

and decision variables are now introduced:

Auxiliary parameters:

• φ̃mitl : mean supply availability of product m ∈ M in port i ∈ I at time
period t ∈ T under scenario bundle l ∈ L

• w̃ijtl : mean allowable load that can be carried between the channel (i, j) ∈
(I ,J ) at time period t ∈ T under scenario bundle l ∈ L

Auxiliary variables:

• Z̃mitl: mean amount of commodities of type m ∈ M processed at port i ∈ I
at time period t ∈ T under scenario bundle l ∈ L

• X̃mbsnijτtl: amount of commodities of type m ∈ M that were purchased at
time period τ and transported at time period t ∈ T using barge b ∈ B of
towboat s ∈ S of trip n ∈ Nij along arc (i, j) ∈ (I ,J ) under scenario bundle
l ∈ L, where (τ, t) ∈ T |τ ≤ t

• H̃miτtl: amount of commodities of type m ∈ M stored in port i ∈ I ⋃J
between time period τ and t under scenario bundle l ∈ L, where (τ, t) ∈
T |τ ≤ t
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• Ũmjtl: amount of commodities of type m ∈ M shortage in destination port
j ∈ J at time period t ∈ T under scenario bundle l ∈ L

• P̃mjτtl : demand of commodities of type m ∈ M satisfied at destination port
j ∈ J with commodities purchased at time period τ and transported t ∈ T
under scenario bundle l ∈ L, where (τ, t) ∈ T |τ ≤ t

Similar to the constraints (5.100)-(5.109), we now add a set of primal constraints

to the Benders master problem [MP] one for each scenario bundle l ∈ L. Addi-

tionally, lower-bounding cuts (5.111) are added to [MP] for each sceanrio bundle

l ∈ L.

Θl ≥ ∑
t∈T

∑
m∈M

(
∑

i∈I ⋃J
t

∑
τ=1

hmiτtH̃miτtl + ∑
b∈B

∑
s∈S

∑
n∈Nij

∑
(i,j)∈(I ,J )

t

∑
τ=1

cmbsnijτtX̃mbsnijτtl

+ ∑
i∈I

γmitZ̃mitl + ∑
j∈J

πmjtŨmjtl

)
l ∈ L (5.111)

Dual-based mean-value cut

Type C cut: In this approach, we obtain the dual subproblem solutions under a

mean value scenario e, and using this solution, a single inequality is added to

[MP]. The set of dual variables, ϑmite, κmite, ζmiτte, εmjte, βmjτte, χmjte, νite, Γjte, ςmbsnijte,

and Λmbsnijte are now redefined for the mean value scenario e as ϑmit, κmit, ζmiτt, εmjt,

βmjτt, χmjt, νit, Γjt, ςmbsnijt, Λmbsnijt. In iteration r + 1 of the Benders master problem

[MP], following dual-based mean-value inequality can now be added solving the

dual suproblem [DSP] for mean value scenario e at iteration r:

Θ ≥ ∑
t∈T

∑
m∈M

(
∑
j∈J

dmjtχmjt −∑
i∈I

φmitēϑmit − ∑
b∈B

∑
s∈S

∑
n∈Nij

∑
j∈J

∑
i∈I

(
ρmvbŶmbsnijt

Λmbsnijt + min(wijtē, b)Ŷmbsnijtςmbsnijt

))
− ∑

t∈T

(
∑
i∈I

hiνit + ∑
j∈J

hjΓjt

)
(5.112)
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Type D cut

This approach appends a set of inequalities to the [MP] based on the dual subprob-

lem solutions obtained under different mean value scenario bundles el where l ∈

L. The set of dual variables (ϑmite, κmite, ζmiτte, εmjte, βmjτte, χmjte, νite, Γjte, ςmbsnijte,

Λmbsnijte) are now redefined as (ϑmitel , κmitel , ζmiτtel
, εmjtel , βmjτtel

, χmjtel
, νitel , Γjtel ,

ςmbsnijtel
, Λmbsnijtel

) to account for holding the solutions for the mean value sce-

nario el. The following dual-based mean-value cut can be added to [MP] in r + 1th

iteration of the Benders decomposition algorithm after solving the dual subprob-

lem [DSP] for mean value of scenario bundles el in previous iteration r:

Θl ≥ ∑
t∈T

∑
m∈M

(
∑
j∈J

dmjtχmjtel
−∑

i∈I
φmitel ϑmitel − ∑

b∈B
∑
s∈S

∑
n∈Nij

∑
j∈J

∑
i∈I

(
min(wijtel ,

b)Ŷmbsnijtςmbsnijtel
+ ρmvbŶmbsnijtΛmbsnijtel

))
− ∑

t∈T

(
∑
i∈I

hiνitel + ∑
j∈J

hjΓjtel

)
l ∈ L

(5.113)

5.4.3.5 Knapsack inequalities

Santoso et al. [119] showed that once there is a good upper bound for Benders

decomposition algorithm, adding knapsack inequalities with optimality cut (5.54)

can have a considerable impact on the solution quality. In addition, adding knap-

sack inequalities to the master problem can aid the state-of-the-art solvers, such

as CPLEX and GUROBI to derive a variety of valid inequalities from the given

knapsack inequalities. Consequently, adding these inequalities might expedite

the convergence of the Basic benders decomposition algorithm. Let UBr be the
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best known upper-bound found until iteration r, in the next iteration, following

knapsack inequality is added to [RMP]:

UBr ≥ ∑
t∈T

(
∑
e∈E

pe

(
∑

m∈M
∑
b∈B

∑
s∈S

∑
n∈Nij

∑
j∈J

∑
i∈I

(ηmbt −min(wijte, b)ςmbsnijte

−ρmvbΛmbsnijte)Ymbsnijt + ∑
m∈M

(
∑
j∈J

dmjtχmjte −∑
i∈I

φmiteϑmite

)
−∑

i∈I
hiνite − ∑

j∈J
hjΓjte

)
+ ∑

s∈S
∑

n∈Nij

∑
i∈I

∑
j∈Ji

ψstYsnijt

)
(5.114)

Likewise, let LBr be an the best known lower-bound obtained until iteration

r; the following knapsack inequality is added to [RMP] in r + 1th iteration of the

Benders decomposition algorithm:

LBr ≤ ∑
t∈T

∑
s∈S

∑
n∈Nij

∑
i∈I

∑
j∈Ji

(
ψstYsnijt + ∑

m∈M
∑
b∈B

ηmbtYmbsnijt

)
+ Θ (5.115)

5.4.3.6 Integer cut

The basic Benders decomposition algorithm sometimes generate repetitive so-

lutions in the earlier iterations of the algorithm. This is because in the earlier stage

of this algorithm, the master problem do not receive sufficient information from

the subproblems via the optimality cut (5.54). Repetitive solutions does not help

the Benders decomposition algorithm to converge, rather increases the the overall

running time of the algorithm. To address this issue and expedite the convergence

of the algorithm, following Integer cut is added to the master problem in each iter-

ation of the algorithm. Let Yr = {(m, b, s, n, i, j, t)|Ŷr
mbsnijt = 1, ∀m ∈ M, b ∈ B, s ∈

S , n ∈ Nij, i ∈ I , j ∈ Ji, t ∈ T where Ŷr
mbsnijt be the solution obtained by solving
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Benders master problem in any particular iteration r. The following integer cut is

added to the master problem in iteration r + 1:

∑
(m,b,s,n,i,j,t)∈Yr

(1−Ymbsnijt) + ∑
(m,b,s,n,i,j,t)/∈Yr

Ymbsnijt ≥ 1 (5.116)

This inequality force the barge selection decisions to be different in r+ 1th iteration.

Adding this cut speeds up the convergence of the algorithm, however, excessive

addition of these cuts may cut the optimal search area and result in instability

problem. Therefore, in our experiments, we added this cut until the algorithm

reaches to an optimaltity gap of 10%.

5.4.3.7 Warm start strategy

Benders decomposition algorithm generate low quality solutions and suffer

from zig-zagging behavior in its earlier iterations. To overcome these issues, we

adopt a warm-start strategy (WSS) proposed by rahmaniani et al. [112] which gen-

erates an initial set of tight cuts. Different from the heuristic-based strategies,

the key of this strategy is to deflect the current master solution. Let Ymbsnijt be

the solution of the current master problem, Ystart
mbsnijt be an initial starting point,

and 0 < λws < 1 be a weight factor. Given these factors we deflect the current

master solution for barge selection variable using following equation, Yws
mbsnijt =
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{λwsYmbsnijt + (1− λws)Ystart
mbsnijt}∀m∈M,b∈B,s∈S , n∈Nij,i∈I ,j∈Ji,t∈T . Now to generate

cuts, we use the deflected solutions Yws
mbsnijt in the following subproblem:

[DP(WSS)] := Maximize ∑
t∈T

∑
m∈M

(
∑
j∈J

dmjtχmjte −∑
i∈I

φmiteϑmite − ∑
b∈B

∑
s∈S

∑
n∈Nij

∑
j∈J

∑
i∈I

(
min(wijte, b)Yws

mbsnijtςmbsnijte + ρmvbYws
mbsnijtΛmbsnijte

))
−

∑
t∈T

(
∑
i∈I

hiνite + ∑
j∈J

hjΓjte

)
(5.117)

subject to (5.39)-(5.52).

According to [105], if the starting solution Ystart
mbsnijt satisfies the core point prop-

erties, we do not need to solve auxiliary subproblems to generate pareto-optimal

cut. This is because the deflected point in this case guarantees the generation of

non-dominated cuts. Additionally, the upper bound generated using the deflected

solution is also valid for the LP relaxation of the problem. Therefore, while apply-

ing this strategy, no auxiliary subproblems are required to be solved. This strategy

is also capable of considerably alleviating the instability issue of the MP. Further

this strategy dampens the initial large steps of the algorithm through taking an

average with a centered solution. Thus, the Yws
mbsnijt and the whole procedure can

also be interpreted as a stabilizing point and a stabilization strategy [40].

WSS is sensitive to the starting point values, Ystart
mbsnijt. Given the solution Ỹmbsnijt

is obtained from the relaxed version of model [LBF] with maximum amount of

supply and water level (as is defined for lower bounding function), we set the

starting point as follows:

Ystart
mbsnijt = max{0.5, Ỹmbsnijt}∀m∈M,b∈B,s∈S ,n∈Nij,i∈I ,j∈Ji,t∈T
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5.4.3.8 Heuristic improvements

As previously mentioned, the initial iterations of the Benders decomposition

algorithm produce low-quality solutions to the master problem. Additionally, op-

timally solving the master problem [RMP] even with moderate sized network is

challenging. The performance improves as sufficient information from the sub-

problem is passed to the master problem via otimality cut (5.54). To overcome this

problem, we solve the [RMP] by initially setting a larger gap which gradually re-

duces with the progression of the iterations. For instance, we can initially set the

optimality gap for solving the [RMP] as 5% which is then reduce to 1% when the

gap between the upper and lower bound of the Benders decomposition algorithm

falls below 10%.

5.5 Experimental Results

This section presents a real-life case study to test the performance of our pro-

posed model [PIM] and draw managerial insights from it. The model and all

algorithms discussed in section 2.4 are coded in Python 2.7 on a desktop com-

puter with an Intel Core i7 3.6 GHz processor and 32.0 GB RAM. Optimization

solver Gurobi Optimizer 6.53 is used to solve the proposed model and solution

techniques. Three U.S. states alongside lower Mississippi river, namely, Arkansas

(AR), Mississippi (MS), and Louisiana (LA) are considered as a testing ground to

visualize and validate the modeling results. In the next few subsections, we dis-

cuss the input parameters, demonstrate the real-life case study and list the man-

3Available from: http://www.gurobi.com/
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agerial insight obtained from the case study, and discuss the computational per-

formance of the developed algorithms.

5.5.1 Data Description
5.5.1.1 Inland waterway port locations

This study considers eight inland waterway ports alongside Mississippi river.

Among these selected ports, the Port of Rosedale, Port of Greenville, Port of Vicks-

burg, and Port of Natchez are located in Mississippi and the Port of Geismar, Port

of Greater Baton Rouge, Port of South Louisiana, and Port of Gramercy are lo-

cated in Louisiana. These ports are connected to each other via the Mississippi

River system. The geographical locations of them are demonstrated in figure 5.2.

5.5.1.2 Supply data

In this study we consider two agricultural commodities, corn and soybean

that needs to be transported through the inland waterway transportation network.

Corn and soybean suppliers, located within 60 miles radius from the selected ports

are considered in this case study. We then aggregate the supply availability in-

formation of these commodities for each port considering the minimum distance

between suppliers to all origin ports. The supply availability of corn and soy-

bean (in 1,000 tons) is demonstrated in Figure 5.3. The test region produces 113.8

million tons of corn and 101.6 million tons of soybean in 59 and 49 different coun-

ties each year, respectively [135]. Corn is harvested only between mid-July and
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Figure 5.2

Inland waterway port locations along the Mississippi River

287



www.manaraa.com

early December of each year and soybean is harvested between mid-October and

November of each year [133].

5.5.1.3 Demand data

In this case study we consider Port of Rosedale, Port of Greenville, Port of

Vicksburg, and Port of Natchez as destination ports. These ports are located in the

state of Mississippi and commodities received in these ports are used to serve 43

industries located near the Mississippi River. Similar to the supply aggregation,

demand at any destination port is obtained by grouping the commodity demand

at industries located close to that destination port. The test region has an annual

demand of corn and soybean as 68.3 and 52.3 million tons, respectively [135]. The

yearly demand distribution of destination ports can be seen in Figure 5.4.
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(a) Corn

(b) Soybean

Figure 5.3

Supply availability for (a) Corn and (b) Soybean in the test region (in 1,000 tons)
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(a) Corn

(b) Soybean

Figure 5.4

Demand of (a) Corn and (b) Soybean in the test region (in 1,000 tons)
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5.5.1.4 Transportation cost

The inland waterway transportation network considered in this study includes

origin ports and destination ports. Transportation between these two tiers (i, j) ∈

(I ,J ) is done using towboats and barges. Considering the capacity of the Mis-

sissippi river, the towboats here are allowed to carry a maximum of 15 barges in

each trip [138] and the fixed cost of using a towboat is $244.38 [138]. Addition-

ally, the cost of loading and unloading commodities to each barge is set as $15.

The unit commodity transportation cost is $0.017/mile/ton [48, 110]. All costs are

calculated based on 2018 dollars value.

5.5.1.5 Water-level Fluctuations

Transportation through inland waterway transportation network is seriously

impacted by the uncertain water level fluctuations of the river. This is a com-

mon problem faced by different river systems all over the world, Yangtze River

at China [94], Rhine River at Europe [94] and Tagliamento River at Europe [94]

are few examples of this. The Mississippi river also experiences significant water

level fluctuations in its different segments all over the year that imposes a serious

challenge to efficiently plan and conduct barge transportation through this river.

The lower portion of this river possesses sound water flow compared to the upper

portion of this river, therefore, the load carrying capacity of the lower Mississippi

river is more reliable compared to the upper Mississippi River. However, even

this segment is not free from fluctuations. Figure 5.5 demonstrates an example
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of water level fluctuations between Port of Rosedale and Port of Greenville from

July 2016 to June 2017 is provided. Each point in Figure 5.5 indicates the average

weekly water stage [139] at this river segment. Clearly, this figure identifies that

between middle of August to the end of December of a calender year the water

level drops and minimum water stage is obtained during the first three weeks of

October. Except this period, the water stage generally remains above the desired

level (14.2 feet) for other time periods, but in May when the water level reaches to

42 feet, which is higher than the demonstrated flood level, 37 feet.

Figure 5.5

Demonstration water level fluctuations between Port of Rosedale and Port of

Greenville from July, 2016 to June, 2017 [139]
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5.5.2 Real-life Case Study

The highly uncertain waterway conditions coupled with urgent delivery require-

ment of perishable products put the policymakers in serious dilemma to perform

effective and robust transportation planning for inland waterways. Therefore, to

facilitate decision making and derive some key managerial insights from our pro-

posed model [PIM], in this subsection we solve our designed real life case study

and perform sensitivity analysis on different key input parameters. The following

sections provide a comprehensive summary about the impact of these key input

parameters on model [PIM].

5.5.2.1 The impact of deterioration rate αmτt on the overall system performance

The deterioration of perishable commodities can significantly impact the opti-

mal resource allocation and transportation planning of the inland waterway ports

and the network under consideration. To closely analyze its impact on the over-

all system performance, we generate six different scenarios by considering ±20%,

±40% and ±60% change in base deterioration rate of each commodity, i.e., corn

and soybean. Figure 5.6 delineates the impacts of these changes on different key

decision variables along with the overall system. The summary of the experimen-

tal outcomes is outlined below:

• With the increase in deterioration rate (αmτt), the overall inventory at desti-
nation ports (Hmjτt) decrease. More specifically, with 20%, 40%, and 60% in-
crease in αmτt, Hmjτt changes by −42%, −50%, and −52% respectively from
the base case scenario (Figure 5.6(a)). The origin port inventory Hmiτt, on
the other hand, slightly increases with these changes, but this impact is not
much significant. In overall, 20%, 40%, and 60% increase in αmτt decrease
the total storage at origin and destination ports by 10.6%,11.93%, and 12.3%
from the base case.
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• Decreasing αmτt by 20%, 40%, and 60% changes Hmjτt by +2.4%,+46.2%, and
+53.3% from the base case scenario (Figure 5.6(a)). Alike the αmτt increment
cases, decrement cases also show minimal changes to the origin port inven-
tory Hmiτt. The cumulative inventory storage changes by +0.3%, +11.2%,
and +12.9% from the base case scenario due to −20%, −40%, and −60%
changes to the αmτt (Figure 5.6(a)).

• Figure 5.6(b) represents that 20%, 40% and 60% increase in deterioration rate
the overall commodity transportation through the network is reduced by
16000, 23500, and 26000 tons from the base case, which negatively impacts
the demand satisfaction as well. On the other hand 20%, 40%, and 60% de-
crease in deterioration rate help system to transport about 3000, 14500, and
17500 tons more commodities from the base case that decreases the amount
of unsatisfied demand throughout the system.

• Figure 5.6(c) demonstrates that the overall system cost experience an increase
by 11.4%, 22.4%, and 32.9% from the base case cost due to +20%, +40%, and
+60% change in αmτt. These changes increase the computational complex-
ity of the model, therefore, we notice about +21.1%, +29.9%, and +33.2%
change in solution time respectively, from the base case scenario. In con-
trary, −20%, −40% and−60% changes in deterioration rate change total sys-
tem cost by −11.5%,24.4%, and −36.8%, with a decrease in solution time
by 11.7%, 21.6%, and 26.7%, respectively from the base case scenario. This
clearly signifies the importance of deterioration rate (αmτt) on the inland wa-
terway transportation network.

• In overall, the amount of product stored in destination ports is highly im-
pacted by commodity deterioration.
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(a) Inventory Storage (Hmiτt , Hmjτt) (b) Change in unsatisfied (Umjt) and

(Xmbsnijτt) satisfied demand

(c) Change in objective function value and

Solution time
Figure 5.6

Impact of αmτt changes on overall system performance.
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5.5.2.2 Impact of water level fluctuation wijtω on overall system performance

This set of experiment investigates the impact of water level fluctuation on the

overall system performance. We generate six water level scenarios considering

±15%, ±30% and±45% change in mean water level w̄ijtω and compare the results

with for the base w̄ijtω. Our observations from this experiment are listed below:

• The results in Figure 5.7(a) indicate that with 15%, 30% and 45% increase
in w̄ijtω the overall barge usage drops by 13.2%,22.7%, and 28.3%, addition-
ally, we see the reduction in the overall towboat usage by 9.8%, 18.1%, and
25.1%, respectively from the base case scenario. In contrary, 15%, 30%, and
45% decrease in mean water level w̄ijtω compels the system to utilize 17.1%,
37.5%, and 60.6% more barges respectively than the base case. With these
changes the system is now motivated to use 17.2%,36.8%, and 58.9% more
towboats from the base case. This is because as the mean water level drops,
to avoid barges being stuck in any part of the waterway, the system decides
to transport less load on each barge compared to its design capacity, hence
the overall barge usage raises and we need more towboats to transport these
additional barges.

• Figure 5.7(b) illustrates the impact of mean water level w̄ijtω on the load per
barge and the load per storage. As previously mentioned, different water
level condition requires barges to adjust their weight capacity. Hence, once
w̄ijtω is increased by 15%, 30% and 45%, the load per barge increases by
+15.1%, +29.3%, and +39.6% respectively from the base case scenario. On
the other hand, 15%, 30% and 45% reduction w̄ijtω causes the barges to carry
14.6%, 29.6% and 44.3% less products from the base case scenario. Further,
change in mean water level impacts the utilization of available storage ca-
pacity. With 45% increase in w̄ijtω the storage capacity utilization rises by
+12.1%, whereas in the extreme water level case i.e., −45% this change is
about−9.5%. This explains that with the higher water level, more commodi-
ties can be transported which triggers more storage requirement to support
the peak demand other than using the third party supply.

• Figure 5.7(c) indicates that although increase in mean water level has no con-
siderable effect on objective function value, with 30% and 45% decrease in
mean water level, due to the the increase in unsatisfied demand, objective
function value changes by +16.3%, and +33.9% respectively from the base
case scenario. Additionally, it can be observed that change in mean water
level has a direct impact on the complexity of model, that can be measured
by solution time. As mean water level decrease by 15%, 30% and 45%, the
corresponding solution time change by +43.5%,+73.4%, and +85.4% from
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the base case scenario. However, with 15%, 30% and 45% increase in mean
water level, solution time drops by 34.9%, 42.1% and 47.9% from the base
case scenario. This result signifies that with higher water level the model
complexity reduces, therefore, less time is required to solve the model. This
highlights the importance of water level(wijtω) considerations on the inland
waterway transportation network.
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(a) Change in number of barges (Ymbsnijt) and

towboats (Ysnijt)

(b) Change in load per barge and inventory

storage

(c) Change in objective function value and So-

lution time
Figure 5.7

Impact of wijtω changes on overall system performance.
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5.5.3 Performance Evaluation of the Algorithms

This section presents our computational experience in solving model [PIM] using

the algorithms presented in Section 2.4. We vary sets |I|, |J |, |M|, |S|, and |T | in

[PIM] to generate 9 different problem instances, the details of these instances can

be found in Table 5.1. We used following termination criterion to terminate the

algorithms: (i) the optimality gap, i.e., ε = |UB− LB|/UB falls below a threshold

value (e.g., ε = 2.0%); (ii) the maximum time limit, tmax is reached (e.g., tmax =

14, 400 CPU seconds); or (iii) the maximum iteration limit, qmax is reached (e.g.,

qmax = 500). Tables 5.2, 5.3, and ?? shows the the performance of different variants

of Benders decomposition algorithm. In reporting results, the column headings

ε(%) and t(sec) respectively indicate the optimality gap and solution time. Note

that, while reporting the dominant algorithm for each test instance, we highlighted

the algorithm which yield the lowest solution time to solve the given instance

within the predefined gap threshold (ε = 2.0%). If such a quality solution is not

found within the stipulated time frame, the algorithm with lowest optimality gap

was highlighted.
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Table 5.1

Problem size and test instances

Instance

No
|I| |J | |M| |B| |S| |N | |T |

Binary

variables

Continuous

variables

Total

variables

No. of

constraints

1 4 2 2 15 6 5 4 22,320 86,768 109,088 59,200

Small 2 4 2 3 15 8 5 4 44,160 173,352 217,512 107,592

3 4 2 4 15 10 5 4 73,200 288,736 361,936 170,384

4 6 3 2 15 6 5 4 55,800 216,552 272,352 147,624

Medium 5 6 3 3 15 8 5 4 110,400 432,828 543,228 268,452

6 6 3 4 15 10 5 4 183,000 721,104 904,104 425,280

7 8 4 2 15 6 5 4 104,160 403,936 508,096 275,264

Large 8 8 4 3 15 8 5 4 206,080 807,504 1,013,584 500,688

9 8 4 4 15 10 5 4 341,600 1,345,472 1,687,072 793,312

The first set of experiments test the performance of Type-1 and Type-2 cuts

with and without the inclusion of Pareto-optimal (PO) cut under the Benders de-

composition algorithm. Table 5.2 shows the results of these four variants of ac-

celerated Benders decomposition algorithm. Note that all these algorithms were

nested under the Sample average approximation (SAA) scheme with a sample size

E = 100. The result shows that, incorporating PO cut with both Type-1 and

Type-2 cuts significantly improve the optimality gap ε and reduce the run time

t. Specifically, applying PO cut with Type-1 cut changes the optimality gap from

12.02% to 2.15% along with saving the computational time by 5, 058 CPU seconds,

on average. For Type-2 cut with PO these changes are 12.00% to 2.12% and 5, 194,

respectively. Additionally, Table 5.2 points out that the Type-2 cut slightly domi-
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nates Type-1 cut in terms of both optimality gap and running time. Also, the PO

cut with Type-2 cut variant outperforms other three algorithm variants in Table

5.2.

Table 5.2

Experimental results of Type-1 and Type-2 cut with and without PO cut

Type-1 Type-2

Instance

No.

W/o PO PO W/o PO PO

ε(%) t(sec) ε(%) t(sec) ε(%) t(sec) ε(%) t(sec)

1 2.42 14,400 0.88 2,120 2.68 14,400 0.62 2,184

2 5.39 14,400 0.12 3,619 5.71 14,400 1.05 3,869

3 9.36 14,400 1.95 8,144 9.07 14,400 1.89 7,721

4 6.65 14,400 1.82 5,424 6.73 14,400 1.34 5,512

5 11.78 14,400 1.42 11,239 12.14 14,400 1.64 10,942

6 16.24 14,400 3.17 14,400 16.78 14,400 3.02 14,400

7 9.97 14,400 1.19 10,332 9.54 14,400 1.48 9,426

8 19.62 14,400 3.41 14,400 20.46 14,400 2.94 14,400

9 26.78 14,400 5.42 14,400 24.96 14,400 5.17 14,400

Average 12.02 14,400 2.15 9,342 12.00 14,400 2.12 9,206

Next, we compare the computational benefits of adding Type A, B, C, and D

cuts to the Benders decomposition algorithm through the results summarized in
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Table 5.3. This set of experiments also uses the same SAA sample size i.e., E =

100. Additionally, all algorithm variants in Table 5.3 include valid inequalities and

knapsack inequalities discussed in sections 5.4.3.1 and 5.4.3.5, respectively. Results

in Table 5.3 indicate that Type D cut variant dominates other three cut variants

in terms of solution time and quality. Even though among 9 problem instances it

solves the first instance within the time limit, but for another 6 out of 8 remaining

instances, this algorithm provides the best optimality gap, 10.05% on average. In

summary, the addition of Type D cut can reduce the optimalty gap to almost one

third of that produced by Type A and B cuts. Further, Type B and D cut that uses

scenario bundling technique can make the basic Benders decomposition algorithm

highly efficient and among them Type D shows the best result.
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Table 5.3

Experimental results with Type A, B, C, and D cuts

Instance

No.

Type A Type B Type C Type D

ε(%) t(sec) ε(%) t(sec) ε(%) t(sec) ε(%) t(sec)

1 7.35 14,400 1.75 12,621 5.44 14,400 1.68 11,632

2 14.03 14,400 2.68 14,400 11.98 14,400 2.07 14,254

3 24.97 14,400 9.48 14,400 21.71 14,400 8.74 14,400

4 17.61 14,400 6.12 14,400 15.08 14,400 6.76 14,400

5 32.48 14,400 11.28 14,400 32.37 14,400 10.51 14,400

6 44.61 14,400 15.32 14,400 43.68 14,400 13.78 14,400

7 30.02 14,400 8.97 14,400 27.30 14,400 9.07 14,400

8 41.60 14,400 19.87 14,400 43.42 14,400 16.45 14,400

9 49.40 14,400 24.92 14,400 49.91 14,400 21.39 14,400

Average 29.11 14,400 11.15 14,202 27.87 14,400 10.05 14,076

The experiments presented in Table 5.3 clarifies the dominance of enhanced

Benders decomposition algorithm with Type D cut in solving the model [PIM]. To

test the performance of other enhancement techniques discussed in section 5.4.3,

first we select the enhanced Benders decomposition algorithm with Type D cut

and add Type-2 cut enhanced with PO with it which was the dominant cut in

Table 5.2. We name this new algorithm variant as TD+T2+PO. Next, we define
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few new variants by sequentially adding the integer cut with heuristics and the

warm start strategy to algorithm TD+T2+PO and denote them as TD+T2+PO+Int

and TD+T2+PO+Int+WSS. All these new algorithm variants along with Type D

variant are tested under three different SAA sample sizes, W1 = 100, W2 = 150,

and W3 = 200 and the results of this experiment are reported in Tables 5.4, 5.5,

and 5.6. The numerical results show that Type D cut variant is able to solve only

the first instance out of 9 instances for all three scenario size problems under the

pre-specified termination criteria. Algorithm TD+T2+PO, on the other hand, can

efficiently solve 8 instances of model [PIM] with |Ω| = 100 and |Ω| = 150, and 7

instances of the problem with |Ω| = 200. In addition, applying TD+T2+PO cut,

the average optimality gap achieved with Type D cut is now changed to 1.66%,

1.75%, and 1.92% for |Ω| = 100, |Ω| = 150, and |Ω| = 200, respectively. The solu-

tion time also drops by 41.5, 38.7, and 35.4%. Including the integer cut and heuris-

tic improvement techniques to TD+T2+PO cut (TD+T2+PO+Int cut) we achieve

a slightly better solution quality with a quicker solution time. However, this ac-

celerating technique also could not solve the last instance of both 150 and 200

scenario problems. Finally, we apply TD+T2+PO+Int+WSS cut and the results

show that this cut significantly improves the performance of the basic Benders de-

composition algorithm and additionally it can solve all test instances under the

experimental range. TD+T2+PO+Int+WSS cut reduces the solution time from

7, 914, 8, 417, and 8, 906 CPU seconds to 7, 570, 8, 059, and 8, 581 CPU seconds,

which was produced by the TD+T2+PO+Int cut for the 100, 150, and 200 scenario
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problems, respectively. This technique also slightly reduces the average optimality

gap that was obtained using TD+T2+PO+Int technique. Further, Tables 5.4, 5.5,

and 5.6 lists the results of transportation and storage related decision variables for

all test instances. The average value of these transportation and storage related

decisions for problem [PIM] with |Ω| = 100, |Ω| = 150, and |Ω| = 200 shows

almost same results with negligible difference. For example, for the 100, 150, and

200 scenario problems, the average number of barges used is equal to 1691, 1691,

and 1693 which are very close. Therefore, we can realize that considering only 100

scenarios would be enough to obtain robust solutions from our proposed model,

whereas with increased scenarios the model will be computationally more chal-

lenging requiring more time to solve (e.g., 200 scenarios problem takes 12% more

time compared to 100 scenario problem).
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Algorithm 1:The Benders decomposition algorithm

Initialization: , r ← 1, ε, UBr ← +∞, LBr ← −∞,P r
D ← 0

terminate← f alse

while terminate = f alse do

Solve [MP] to obtain {Yr
snijt}s∈S ,n∈Nij,i∈I ,j∈Ji,t∈T

and {Yr
mbsnijt}m∈M,b∈B,s∈S ,n∈Nij,i∈I ,j∈Ji,t∈T and zr

MP

if zr
MP ≥ LBr then

LBr ← zr
MP

end if

For fixed {Ŷr
mbsnijt}m∈M,b∈B,s∈S ,n∈Nij,i∈I ,j∈Ji,t∈T and {Ŷr

snijt}s∈S ,n∈Nij,i∈I ,j∈Ji,t∈T

solve [DSP] to obtain (ϑ, κ, ζ, ε, β, χ, ν, Γ, ς, Λ) ∈ PD and zr
SUB

if zr
SUB + zr

MAS < UBr then

UBr ← zr
SUB + zr

MAS

end if

if UBr−LBr

UBr ≤ ε then

terminate← true

else

P r+1
D ← P r

D ∪ {(ϑ, κ, ζ, ε, β, χ, ν, Γ, ς, Λ)}

end if

r ← r + 1

end while
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Algorithm 2: OpenCloseArcs algorithm

Initialization: ∀aij ∈ (D, D), t ∈ T : Ymax
t,aij
← τijt × δs; YRE

t,aij
← Yt,aij = 0

∀t ∈ T : Ut ← ∑aij∈(D,D) ut,aij ; Dt ← dmax
t(D,D)

; εci ← 10−5

for t ∈ T do

for aij ∈ (D, D) (in arbitrary order) do

if {Ŷmbsnaijt}∀m∈M,b∈B,s∈S ,n∈Nij ≥ 0 do

YRE
t,aij
← YRE

t,aij
+ 1

end if

compute Yt,aij =
YRE

t,aij

Ymax
t,aij

if Yt,aij ≤ εci and Ut − ut,aij ≥ Dt then

Add aij to C0,t

Close aij by setting Ut ← Ut − ut,aij

end if

if Yt,aij ≥ 1− εci and Dt − ut,aij ≥ 0 Then

Add aij to C1,t

Open aij by setting Dt ← Dt − ut,aij and Ut ← Ut − ut,aij

end if

end for

end for
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5.6 Conclusion and Future Research Directions

This study develops a two-stage stochastic mixed-integer linear programming

model that determines the optimal resource usage and transportation related strate-

gic and tactical decisions for an inland waterway transportation network under

uncertainty. The model is designed to capture all realistic features of inland wa-

terway transportation network including variability in water level, commodity

supply, and the shelf life of commodities and provide the reliable network design

solutions. Prime solutions such as the trip-wise towboat and barge assignment de-

cisions, inventory management, and transportation decisions obtained from our

model provides a reliable plan for inland ports under consideration with a mini-

mal impact of uncertainty. We developed a nested decomposition algorithm com-

bining the enhanced Benders decomposition algorithm with the sample average

approximation method to solve our proposed optimization model in an efficient

and timely manner. We demonstrate a case study considering a few Southeast US

States as a ground of analysis. Additionally, sensitivity analysis is conducted that

reveals the impact of various key input parameters (e.g., commodity deterioration

rate and water level fluctuation) on the modeling result and reveals a number of

managerial insights for policy makers and future investors.

To sum up, the major contributions of this work are as follows: (i) developing

a multi-commodity, multi-time period two-stage stochastic mixed integer linear

programming model to optimize the inland waterway port operations considering

the perishable products, uncertain commodity supply and waterway conditions
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with all realistic inland waterway related issues; (ii) presenting a novel nested

decomposition combining Sample Average Approximation, and enhanced ben-

ders decomposition to solve realistic-size network design problems; (iii) extract-

ing crucial managerial insight from a real-life case study. Note that, our proposed

methodologies can also be adopted in solving different stochastic optimization

problems. The managerial insights drawn from the case study will help policy

makers to design and manage a robust and cost-efficient inland waterway trans-

portation network under uncertainty

This research direct us to explore multiple research avenues. We might model

the barge and towboat flows using the essence of the vehicle routing problem.

Additionally, the barge and towboat routing, scheduling, and re-positioning is-

sues can be considered to analyze the impact of them on the inland waterway port

operations. Further, realizing that the inland waterway ports may experience both

natural (e.g., hurricane, tornado) and/or human-induced (e.g., cyber attack) dis-

ruptions, the impact of these disruptions on inland waterway port operations can

also be investigated. Future studies will address these issues.
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[11] Arango C., Cortés P., Muñuzuri J., Onieva L., “Berth allocation planning in
Seville inland port by simulation and optimisation,” Advanced Engineering
Informatics, vol. 25, no. 3, 2011, pp. 452–461.

[12] Balinski M.L., “Fixed cost transportation problems,” Naval Research Logistics
Quarterly, vol. 8, 1961, pp. 41–54.

[13] Baroud H., Barker K., Ramirez-Marquez J.E. , “Importance measures for
inland waterway network resilience.,” Transportation research part E, vol. 62,
2014, pp. 55–67.

[14] Batun S., Denton B.T., Huschka T.R., Schaefer A.J., “Operating room pooling
and parallel surgery processing under uncertainty.,” INFORMS Journal on
Computing, vol. 23, no. 2, 2011, pp. 220–237.

[15] Benders J.F., “Partitioning procedures for solving mixedvariables program-
ming problems.,” Numerische Mathematik, vol. 4, 1962, pp. 237–252.

[16] Birge J.R., Louveaux F., “ Introduction to Stochastic Programming.,” New
York, NY, USA, 1997.

[17] Birge J.R., Louveaux F.V., “A multicut algorithm for two-stage stochastic
linear programs.,” European Journal of Operational Research, vol. 34, no. 3,
1988, p. 384392.

[18] Blazquez C.A., Adams T.M., Keillor P., “Optimization of mechanical dredg-
ing operations for sediment remediation.,” Journal of waterway, port, coastal,
and ocean engineering, vol. 127, no. 6, 2001, pp. 299–307.

[19] Braekers K., Caris A., Janssens G.K., “Optimal shipping routes and vessel
size for intermodal barge transport with empty container repositioning.,”
Computers in Industry, vol. 64, no. 2, 2013, pp. 155–164.

[20] Braekers K., Janssens G., Caris A., “Determining optimal shipping routes
for barge transport with empty container repositioning,” EUROSIS, 2010.

[21] Chang M., Tseng Y., Chen J., “A scenario planning approach for the flood
emergency logistics preparation problem under uncertainty.,” Transportation
Research Part E: Logistics and Transportation Review, vol. 43, no. 6, 2007, pp.
737–754.

314



www.manaraa.com

[22] Chen C.-W., Fan Y., “Bioethanol supply chain system planning under supply
and demand uncertainities.,” Transportation Research Part E, vol. 48, 2012, pp.
150–164.

[23] Chouman M., Crainic T.G., Gendron B., “Commodity representations and
cut-set-based inequalities for multicommodity capacitated fixed-charge net-
work design,” Transportation Science, vol. 51, no. 2, 2016, pp. 650–667.

[24] Christiansen M., Fagerholt K., Flatberg T., Haugen Ø., Kloster O., Lund E.H.,
“Maritime inventory routing with multiple products: A case study from the
cement industry,” European Journal of Operational Research, vol. 208, no. 1,
2011, pp. 86–94.

[25] Cornett A., Tschirky P., Knox P., Rollings S., “Moored ship motions due to
passing vessels in a narrow inland waterway,” Coastal Engineering 2008: (In
5 Volumes), World Scientific, 2009, pp. 722–734.

[26] Crainic T.G., Fu X., Gendreau M., Rei W., Wallace S.W., “Progressive
hedging-based metaheuristics for stochastic network design,” Networks, vol.
58, 2011, pp. 114–124.

[27] Dadashi A., Dulebenets M.A., Golias M.M., Sheikholeslami A., “A novel
continuous berth scheduling model at multiple marine container terminals
with tidal considerations.,” Maritime Business Review, vol. 2, no. 2, 2017, pp.
142–157.

[28] Davidovic T., Lazic J., Maras V., Stepe V., “Combinatorial formulation
guided local search for inland waterway routing and scheduling,” Proceed-
ings of 13th IASTED International Conference on Control and Applications, 2011.

[29] De A.M., Vamsee K.R.G., Angappa S., Nachiappan T., Manoj K., “Compos-
ite particle algorithm for sustainable integrated dynamic ship routing and
scheduling optimization,” Computers & Industrial Engineering, vol. 96, 2016,
pp. 201–215.

[30] Depuy G.W., Taylor G.D., Whyte T., “Barge fleet layout optimization.,” In-
ternational Journal of Computer Integrated Manufacturing, vol. 17, no. 2, 2004,
pp. 97–107.

[31] DeVuyst E., Wilson W.W., Dahl B., “Longer-term forecasting and risks in
spatial optimization models: The world grain trade,” Transportation Research
Part E: Logistics and Transportation Review, vol. 45, no. 3, 2009, pp. 472–485.

[32] Du Y., Chen Q., Lam J.S.L., Xu Y., Cao J.X., “Modeling the impacts of tides
and the virtual arrival policy in berth allocation.,” Transportation Science, vol.
49, no. 4, 2015, pp. 939–956.

315



www.manaraa.com

[33] Duan G., Nur F., Alizadeh M., Chen L., Marufuzzaman M., Ma J., “Vessel
routing and optimization for marine debris collection with consideration of
carbon cap,” Journal of Cleaner Production, 2020, p. 121399.

[34] Elhedhli S., Wu H., “A Lagrangean heuristic for hub-and-spoke system de-
sign with capacity selection and congestion,” INFORMS Journal on Comput-
ing, vol. 22, no. 2, 2010, pp. 282–296.

[35] Elia J.A., Baliban R.C., Xiao X., Floudas C.A., “Optimal energy supply net-
work determination and life cycle analysis for hybrid coal, biomass, and
natural gas to liquid (CBGTL) plants using carbon-based hydrogen produc-
tion,” Computers & Chemical Engineering, vol. 35, no. 8, 2011, pp. 1399–1430.

[36] P. et al., “Strategic Assessment of Bioenergy Development in the West: Spa-
tial analysis and supply curve development,” Final Report to the Western
Governors Association, prepared by the University of California-Davis, 2008.

[37] Fagerholt K., “A computer-based decision support system for vessel fleet
schedulingexperience and future research,” Decision Support Systems, vol.
37, no. 1, 2004, pp. 35–47.

[38] Fan L., Wilson W.W., “Impacts of congestion and stochastic variables on the
network for US container imports,” Journal of Transport Economics and Policy
(JTEP), vol. 46, no. 3, 2012, pp. 381–398.

[39] Fazi S., Fransoo J.C., Van W.T., “A decision support system tool for the
transportation by barge of import containers: a case study,” Decision Support
Systems, vol. 79, 2015, pp. 33–45.
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