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This dissertation develops mathematical models to efficiently manage the in-
land waterway port operations while minimizing the overall supply chain cost. In
the first part, a capacitated, multi-commodity, multi-period mixed-integer linear
programming model is proposed capturing diversified inland waterway trans-
portation network related properties. We developed an accelerated Benders de-
composition algorithm to solve this challenging NP-hard problem. The next study
develops a two-stage stochastic mixed-integer nonlinear programming model to
manage congestion in an inland waterway transportation network under stochas-
tic commodity supply and water-level fluctuation scenarios. The model also jointly
optimizes trip-wise towboat and barge assignment decisions and different supply
chain decisions (e.g., inventory management, transportation decisions) in such a
way that the overall system cost can be minimized. We develop a parallelized hy-

brid decomposition algorithm, combining Constraint Generation algorithm, Sam-
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ple Average Approximation (SAA), and an enhanced variant of the L-shaped al-
gorithm, to effectively solve our proposed optimization model in a timely fashion.

While the first two parts develop models from the supply chain network de-
sign viewpoint, the next two parts propose mathematical models to emphasize the
port and waterway transportation related operations. Two two-stage, stochastic,
mixed-integer linear programming (MILP) models are proposed under stochastic
commodity supply and water level fluctuations scenarios. The last one puts the
specific focus in modeling perishable inventories. To solve the third model we pro-
pose to develop a highly customized parallelized hybrid decomposition algorithm
that combines SAA with an enhanced Progressive Hedging and Nested Decom-
position algorithm. Similarly, to solve the last mathematical model we propose
a hybrid decomposition algorithm combining the enhanced Benders decomposi-
tion algorithm and SAA to solve the large size of test instances of this complex,
NP-hard problem. Both proposed approaches are highly efficient in solving the
real-life test instances of the model to desired quality within a reasonable time
frame.

All the four developed models are validated a real-life case study focusing on
the inland waterway transportation network along the Mississippi river. A num-
ber of managerial insights are drawn for different key input parameters that im-
pact port operations. These insights will essentially help decisions makers to effec-

tively and efficiently manage an inland waterway-based transportation network.
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CHAPTER 1

INTRODUCTION

1.1 Introduction

Inland waterway ports are indispensable components of the nation’s waterway
transportation system which greatly contributes to the overall economy of the na-
tion. Currently, more than 60% of the United States grain exports, 22% petroleum
and petroleum products, and 20% coal are transported through inland waterway
ports [140]. Additionally, these ports contribute approximately 15 billion dollars to
the nation’s GDP (Gross Domestic Product) along with creating more than 250,000
job opportunities (both direct and indirect) annually [89]. Inland ports play a ma-
jor role in the rural industrial and agricultural development for a nation [84]. De-
spite of their great potentiality, this segment of transportation system is frequently
impacted by many factors which hurts it’s productivity, including but not limited
to congestion, aging infrastructure, delays caused by scheduled and unscheduled
closures of locks (primarily due to maintenance activities), and many others [140].
According to the American Society of Civil Engineers (ASCE), in 2010, the United
States encountered a total of $33 billions of additional annual expenditure primar-
ily due to the delays governed by congestion and other waterway specific issues

[8]. This cost will continue to increase over time and is projected to reach nearly

1
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$49 billions by 2020 [8]. Therefore, optimizing the shipment planning is manda-
tory for the inland waterway ports not only to gain competitive advantage over its
counterparts (e.g., rail, trucks) but also to survive in this increasingly competitive
market.

Though seemingly sound similar, inland waterway ports hold some unique
properties that differ them significantly from the seaports. For instance, these ports
generally handle barge traffic drafting upto 9 feet only, located primarily near
smaller bodies of water (e.g., rivers and canals), usually land intensive, and/or
handle smaller counts of larger users and a large number of smaller users [84].
Additionally, the water level between the channels of two connecting inland wa-
terway ports fluctuates heavily in different time periods of the year [139, 94, 90].
Depending on the severity of this fluctuation, these ports, including the waterway
itself, often experience disruptions, such as drought and flood that may tremen-
dously impact or even cease the port operations for an extended period of time.
Another prevalent feature that distinguishes inland waterway ports over seaports
is that these ports commute heavy volume of perishable agricultural products
which are highly seasonal in nature. The seasonality in agricultural products
coupled with time varying waterway conditions and the availability of locks and
dams between two source destination ports may excessively delay the port op-
erations which directly impacts the operational planning of the ports under con-
sideration. With all these outstanding challenges, it is quite certain that the opti-

mization models available in the literature for the maritime transportation may no

2
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longer be directly applicable for the inland waterway ports. Hence, to ensure long
term sustainment of the inland waterway ports, there is a critical need to develop
sophisticated optimization models that best capture the unique characteristics of
this cost efficient, reliable, and environmentally friendly transportation sector.

A major stream of ongoing research develop optimization models to solve di-
versified seaport-related problems, such as ship routing and scheduling [33, 29,
68], inventory routing [5], berth allocation and scheduling [27, 32, 141], empty
container re-positioning [43], sailing speed optimization [73, 141], bunker con-
sumption [145], emission consideration [141], disruption [43, 126], container rout-
ing [146], port delays [148], and many others. Apart from adopting mathematical
approaches, few researchers develop simulation models to address similar prob-
lems (e.g., [118, 125, 121, 44]). Even though deep penetration to seaport research
is observed, inland waterway ports did not receive much attention from the re-
search community. A few considerations can be noticed for deep draft inland ports
which are capable of handling container cargos and ships; however, almost no
research has been conducted to date that puts specific considerations to model
shallow draft inland ports'. These ports primarily handle shallow draft vessels (e.g.,
barge, towboats). Considering their outstanding contributions in the overall trans-

portation system and economy, better understanding of shallow draft inland wa-

IThe ports that are unable to handle barges/vessels drafting more than 9 feet are known as
shallow draft inland ports. For the ones that can handle barges/vessels drafting more than 9 feet, are
known as deep draft inland ports.
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terway ports is imperative to successfully design and manage a sound and efficient
supply chain network.

This dissertation is divided into four sections. The contribution of each section
is mentioned at the corresponding chapter. The first section (CHAPTER II) inves-
tigate shallow draft inland port operations and their impacts on different supply
chain decisions. We propose a multi-commodity, multi-time period Mixed-integer
Linear Programming (MILP) model that optimizes short-term operational deci-
sions such as trip-wise towboat and barge assignment with mid-term supply chain
decisions (e.g., inventory management decisions) in such a way that the overall
supply chain cost can be minimized. The model realistically captures a number
of factors that characterize/impact the operations in a shallow draft inland port,
such as towboat and barge availability, weight and volumetric capacity restriction
of barges, dredging issues, commodity mix restriction, storage restrictions at ports,
trip restrictions between origin-destination ports, and many others. The output
of our model provides optimal towboat and barge assignment, amount of com-
modities stored and transported to different layers of the supply chain network
so that the overall system cost can be minimized. We realize that our proposed
model is an extension of the fixed charged, uncapacitated network flow problem
which is already known to be an N'P-hard problem [74]. Therefore, solving large
instances of this problem is a challenging task. This motivates us to develop a
highly customized solution approach based on the traditional Benders decompo-

sition algorithm. To enhance the performance of our algorithm, we create several

4
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stronger cuts, including problem-specific valid inequalities, knapsack inequalities,
pareto-optimal cuts, input ordering, and local branching. In addition to propos-
ing the model, another important contribution of this study is to apply this model
to a real world case study. We use a few states from the Southeast United States
as a testing ground to visualize and validate the modeling results. The outcome
of this study provides a number of managerial insights, such as impact of water
level fluctuation on towboat and barge selection, demand and supply changes,
and barge availability on overall system performance, which can effectively aid
decision makers to design a cost-efficient shallow draft inland waterway trans-
portation network.

In the second section (CHAPTER III) we propose a model which specifically
focus in port congestion while considering shallow draft inland waterway port-
related internal (e.g., barge/towboat assignments, inventory decisions, port de-
lays) and external (e.g., waterlevel fluctuations) factors/decisions that impact the
overall supply chain system performance. We propose a capacitated, multi-commodity,
multi-period, two-stage stochastic mixed-integer nonlinear programming model
which jointly optimizes trip-wise towboat and barge assignment decisions along
with different supply chain decisions (e.g., inventory management, transportation
decisions) under a congested and stochastic environment and in such a way that
the overall supply chain cost can be minimized. The proposed model realisti-
cally captures a number of factors that appropriately characterize the operations

of a shallow draft inland waterway port, such as towboat and barge availability,

5
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weight and volumetric capacity restriction of barges, dredging issues, commodity
mixture restrictions, storage restrictions at ports, trip restrictions between origin-
destination ports, congestion issues, delays in locks and dams, and many others.
We realized that our proposed mathematical model is N'P-hard. Therefore, we
develop a highly customized parallelized hybrid decomposition algorithm, com-
bining Constraint Generation algorithm, Sample Average Approximation, and an
enhanced variant of the L-shaped algorithm, to effectively solve the large instances
of our proposed optimization model in a reasonable amount of time. We solved
a real world case study to visualize and validate our modeling results. Identical
to the case study of Chapter II, inland waterway transportation network along the
Mississippi river is used as a testing ground. The outcome of this study provides
a number of managerial insights, such as the impact of water level fluctuations
on towboat and barge selection, cost due to delay in transportation, and commod-
ity supply fluctuations on overall system performance, which can effectively aid
decision makers to design a cost-efficient shallow draft inland waterway trans-
portation network.

The next Section (CHAPTER IV) puts more emphasize in waterway fluctua-
tion and related issues and develops reliable optimization model that account for
different factors which frequently impact the inland waterway port operations. A
capacitated, multi-commodity, multi-period, two-stage stochastic mixed-integer
linear programming model is proposed that jointly optimizes trip-wise barge and

towboat assignment decisions along with inventory management and transporta-

6
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tion decisions with a goal of minimizing the overall system cost under water level
and commodity supply uncertainty. Since first two chapters analyze and optimize
the model from a supply chain viewpoint, this chapter puts more emphasize in
waterway port based transportation and resource allocation decisions removing
any external tiers than the origin (the point where the waterway transportation
starts) and destination ports (the point where the waterway transportation ends).
To solve this N'P-hard problem and obtain solutions within a limited computa-
tional time, we develop a highly customized parallelized hybrid decomposition al-
gorithm which combines Sample Average Approximation with an enhanced Pro-
gressive Hedging (PH) and Nested Decomposition (ND) algorithm. Several tech-
niques are used to enhance the PH algorithm, such as penalty parameter updating,
global and local heuristics, and scenario bundling techniques. On the other hand,
techniques, such as problem-specific valid inequalities, strengthened Benders and
Lagrangian cuts, are used to enhance the performance of the ND algorithm. To
the end, two parallelization schemes are proposed to parallelize the entire hybrid
decomposition algorithm. Extensive computational experiments are presented to
demonstrate how the parallelized hybrid decomposition algorithm effectively and
efficiently solves the proposed mathematical model. Apart from proposing the
mathematical model and solution approaches, we demonstrate a real-life appli-
cation by utilizing the inland waterway transportation network along the lower

Mississippi River. The outcome of this study provides a number of managerial in-
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sights which may effectively aid decision makers to design a cost-efficient shallow
draft inland waterway transportation network.

The last section (CHAPTER V) extends the previous section (CHAPTER IV)
to consider the commodity perishability issues in managing port inventories. We
proposed a mathematical model that captures the prevalent inland waterway port
related issues (e.g., waterlevel fluctuations, barge/towboat assignments, inven-
tory decisions, and port delays) and combine them under the same decision mak-
ing framework that magnifies their impacts on designing and managing a sound,
robust inland waterway transportation network. Our proposed multi-commodity,
multi-period, two-stage stochastic mixed-integer linear programming model ef-
ficiently captures all the aforementioned issues that appropriately characterizes
the shallow draft inland waterway port operations. Our proposed mathemati-
cal model is N'P-hard [74]. Therefore, to cope with the computational challenge
in solving this model we develop a highly customized nested decomposition al-
gorithm. This algorithm combines enhanced Benders decomposition algorithm
under Sample Average Approximation framework to effectively solve the large
instances of our proposed model within a reasonable time frame. Further, we
demonstrate a real life application of our proposed model considering the inland
waterway transportation network along the lower Mississippi river. The outcome
of this study provides a number of managerial insights, such as the impact of wa-
ter level fluctuations on towboat and barge selection, and impact of commodity

deterioration rate on overall system performance, which can effectively aid deci-
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sion makers to design a reliable and cost-efficient shallow draft inland waterway

transportation network under uncertainty.
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CHAPTER 2
OPTIMIZING INLAND WATERWAY PORT MANAGEMENT DECISIONS

CONSIDERING WATERLEVEL FLUCTUATIONS

2.1 Introduction

Inland waterway ports are integral components of a nation’s transportation
system which significantly contributes to the overall economy. Currently, more
than 60% of the United States grain exports, 22% petroleum and petroleum prod-
ucts, and 20% coal are transported through inland waterway ports [140]. These
ports contribute approximately 15 billion dollars to the country’s total GDP (Gross
Domestic Product) while creating more than 250,000 job opportunities (both di-
rect and indirect) nationwide [89]. Inland waterway ports play a major role in
rural industrial and agricultural development [84]. Despite their potentiality to
contribute in the overall economy, this transportation system is still heavily un-
derutilized due to a number of reasons, such as aging infrastructure, dredging
issues, delays caused by scheduled and unscheduled closures of locks (primarily
due to maintenance activities), and many others [140]. Therefore, optimizing the
shipment planning is mandatory for the inland waterway ports not only to gain
competitive advantage over its counterparts (e.g., rail, trucks) but also to survive

in this increasingly competitive market.
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Inland waterway ports hold some distinguishable properties that differ them
from seaports. For instance, inland waterway ports generally cannot handle barges
drafting more than 9 feet. These ports are primarily located near smaller bodies
of water (e.g., rivers and canals), usually land intensive, and/or handle smaller
counts of larger users and a large number of smaller users [84]. Additionally, these
set of ports experience severe water level fluctuations on their channels in different
time periods of a year [139, 94, 90]. Based on the severity of this fluctuation, inland
waterway ports as well as the waterway may undergo disruptions such as draught
and flood that may severely impact or even cease the port operations for an ex-
tended period of time. These specific characteristics indicate that the optimization
models available in the literature for seaports may no longer be directly applicable
for inland waterway ports. Till now a major stream of research develops optimiza-
tion models to solve diversified seaport related problems, such as ship routing and
scheduling [29, 68], berth allocation and scheduling [27, 32, 141], inventory routing
[5], empty container repositioning [43], speed optimization [73, 141], bunker con-
sumption [145], emission consideration [141], container routing [146], and many
others. Other than optimization approaches, simulation models are also devel-
oped to solve the similar problems for the seaports (e.g., [118, 125, 121, 44]). De-
spite the abundance of seaport literature, inland ports did not receive much at-
tention from the research community. Even though a few consideration is given

to deep draft inland ports capable of handling container cargos and ships, there is
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almost no research that considers shallow draft inland ports' that primarily handles
shallow draft vessels (e.g., barge, towboats) only. For the remaining sections of the
paper, we will refer shallow draft inland ports as inland waterway ports. Considering
their novelty in the overall transportation and economy, better understanding of
inland waterway ports is imperative to successfully design and manage a sound
and efficient supply chain network. To fulfill this need, the current study adopts
an optimization approach for showing the effects of different key managerial de-
cisions on the overall system performance.

The aim of this study is to investigate shallow draft inland port operations and
their impacts on different supply chain decisions. We propose a multi-commodity,
multi-time period Mixed-integer Linear Programming (MILP) model that opti-
mizes short-term operational decisions such as trip-wise towboat and barge as-
signment with mid-term supply chain decisions (e.g., inventory management de-
cisions) in such a way that the overall supply chain cost can be minimized. The
model realistically captures a number of factors that characterize /impact the op-
erations in a shallow draft inland port, such as towboat and barge availability,
weight and volumetric capacity restriction of barges, dredging issues, commod-
ity mix restriction, storage restrictions at ports, trip restrictions between origin-
destination ports, and many others. The output of our model provides optimal

towboat and barge assignment, amount of commodities stored and transported to

IThe ports that are unable to handle barges/vessels drafting more than 9 feet are known as
shallow draft inland ports. For the ones that can handle barges/vessels drafting more than 9 feet, are
known as deep draft inland ports.
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different layers of the supply chain network so that the overall system cost can
be minimized. We realize that our proposed model is an extension of the fixed
charged, uncapacitated network flow problem which is already known to be an
N'P-hard problem [74]. Therefore, solving large instances of this problem is a
challenging task. This motivates us to develop a highly customized solution ap-
proach based on the traditional Benders decomposition algorithm. To enhance the
performance of our algorithm, we create several stronger cuts, including problem-
specific valid inequalities, knapsack inequalities, pareto-optimal cuts, input order-
ing, and local branching. In addition to proposing the model, another important
contribution of this study is to apply this model to a real world case study. We
use a few states from the Southeast United States as a testing ground to visualize
and validate the modeling results. The outcome of this study provides a number
of managerial insights, such as impact of water level fluctuation on towboat and
barge selection, demand and supply changes, and barge availability on overall
system performance, which can effectively aid decision makers to design a cost-
efficient shallow draft inland waterway transportation network.

In summary, the key contributions of this paper are: (i) proposing a multi-
commodity, multi-time period MILP model formulation that facilitates the proper
management and allocation of inland waterway port operations and minimizes
the overall system cost from a supply chain viewpoint; (ii) developing an accel-
erated Benders decomposition algorithm that provides high quality solutions for

large scale problem instances in a reasonable amount of time; and (iii) presenting
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a real-life case study based on the data from the Southeast region of the United
States?.

The exposition of this paper is as follows. Section 2.2 provides a review of
the literature pertaining to inland waterway ports. Section 2.3 discusses the prob-
lem description and introduces the proposed mathematical model formulation.
Different enhancement techniques for the standard Benders decomposition algo-
rithm are discussed in detail in Section 2.4. Section 2.5 presents the computational
performances of different variants of the Benders decomposition algorithm, con-
ducts a real life case study, and draws a series of managerial insights. Finally, we

conclude and present avenues for future research in Section 2.6.

2.2 Literature Review

In recent years few streams of ongoing research has captured different aspects
of deep draft inland waterway port management and operations. These studies
discuss about different issues pertaining to inland waterway transportation such
as delays in locks and dams, barge and towboat routing and repositioning, berth
allocation problem, port disruption, and few others. In this section, we provide a
comprehensive overview of such previous researches.

To date, few studies analyze the performance of locks and dams in inland wa-
terway transportation network. Ting and Schonfeld [129] propose an integrated

tow control algorithm to minimize the delay between a series of locks. Wang

2This chapter has been published in Computers & Industrial Engineering [98].
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and Schonfeld [147] propose a combined simulation-optimization approach to
schedule investment decisions for lock reconstruction and rehabilitation. Ting and
Schonfeld [130] adopt a simulation-optimization approach to decide how much
capacity needs to be increased for the locks so that the costs associated with tow
delays can be minimized.

Another stream of research propose mathematical models for the barge routing
and empty container repositioning problem for the inland waterway transporta-
tion. Braekers et al. [20] optimizes barge routing and empty container reposition-
ing between a sea port and few hinterland ports. The study is extended later in [19]
to include vessel capacity and roundtrip service frequency. Marass [76] proposes a
mixed-integer linear programming (MILP) model to optimize the transport routes
of chartered container ships or tows for an inland waterway port. Alfandari et al.
[6] propose a MILP model that optimizes the planning associated with liner service
for a barge container shipping company. An et al. [9] formulate a mixed integer
nonlinear programming (MINLP) model to solve the empty container reposition-
ing shipping network design problem for an inland waterway transportation net-
work. Davidovic et al. [28] propose a guided local search technique to solve a
barge container ship routing problem.

Berth allocation problem, a prevalent issue experienced by inland waterway
ports, received some considerations from the research community. Grubivsic et
al. [50] propose an MILP model for designing a berth layout of a river port so

that the overall vessel waiting time can be minimized. Depuy et al. [30] considers
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fleet location capacity, total volume of barges, and average handling time to op-
timally allocate barge volume to different fleet locations. Guan and Cheung [51]
propose two berth allocation model formulations and use tree search procedure
with a composite heuristics for solving realistic size problem instances. Arango
et al. [11] adopt both simulation and optimization approach to model the berth
allocation problem. The authors propose a mathematical model and develop a
heuristic procedure based on genetic algorithm to solve the problem.

Realizing the need that a port may fail either due to natural (e.g., hurricane,
tornado) or human-induced (e.g., cyber-attack) disaster, few studies focus on iden-
tifying the resiliency of a deep draft inland waterway port. For instance, Baroud
et al. [13] use stochastic resilience-based component importance measures into
an optimization framework to determine the important waterway links and the
precedence of link recovery in case of a disaster. MacKenzie et al. [72] analyze the
economic impact of any sudden inland port closure by combining a simulation
and a multi-regional input-output model. Pant et al. [103] propose a dynamic,
multi-regional interdependency model to assess the effect of disruptions on the
waterway networks, including both ports and waterway links. Folga et al. [42]
propose a system level model to analyze the interdependency of failure followed
by a disaster. Most recently, Hosseini and Barker [59] propose a Bayesian network
to model the infrastructure resilience of an inland waterway port.

Some other studies related to inland waterway ports include the consideration
of port-specific economic analysis [4, 87, 151, 67], optimal dredging scheduling
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and investment decisions [86, 113, 18], and carbon emission [155, 71, 25]. In ad-
dition to these few recent studies (e.g., [39, 157, 45]) put specific focus on trans-
portation from seaport to inland port to optimize different transportation related
decisions. Fazi et al. (2015) consider the barge transportation from seaport to in-
land ports and provide a decision support system to schedule barges by modeling
the problem as a vehicle routing problem [39]. Zhen et al. (2018) also consider
transportation decisions from seaport to inland ports and provide a mixed-integer
linear programming model to address tugboat scheduling and barge assignment
problem [157]. Fu et al. (2010) illustrate the barge congestion problem and propose
a simulation approach to address this issue [45].

Another stream of research considers inland waterway ports as a tier to solve
different network design problems. Such considerations can be found in many ap-
plication areas including biomass (e.g., [109, 79, 80]), coal (e.g., [35, 47, 62]), grain
(e.g., [88, 10, 31]) supply chain design, and many others. Despite all these efforts,
very few studies have captured the true characteristics of the inland waterway
transportation (e.g., water level fluctuation, barge vs. towboat combination, barge
availability and maintenance) while solving network designing problems. Note
that the literatures included in this section are specific to deep draft inland water-
way ports. Since the shallow draft inland ports hold some distinguished features
over the deep draft inland waterway ports, the models used for deep draft inland
waterway ports cannot be directly applied to the shallow draft inland ports. To

the authors best knowledge, to date no research is available that considers shallow
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draft inland ports handling shallow draft vessels. Our work extends the existing

body of literature in multiple dimensions such as

e Proposing a new mathematical model which simultaneously optimizes the
shallow draft inland waterway port decisions and supply chain network de-
cisions. To date, no literature has captured the impact of shallow draft inland
waterway port decisions on the overall supply chain network decisions.

e Our work effectively model different characteristics which are prevalent in
the shallow draft inland waterway port system, such as barge-tow convoy
considerations, barge maintenance and availability considerations, product-
specific weight and volumetric restrictions, dredging impacts, and many oth-
ers. Very few studies in the literature attempt to optimize the barge-towboat
convoy system for container ports, but no prior attempt has been found that
simultaneously captures all these waterway issues for the inland waterway
transportation.

2.3 Problem Description and Model Formulation

This section presents a multi-commodity, multi-time period mixed-integer lin-
ear programming model for an inland waterway transportation network. The net-
work considers a set of suppliers, origin and destination ports, and customers.
Upon realization of demand for specific commodities, suppliers aim to supply the
commodities through a combination of road and waterway transportation. The
amount of product transported through the network is constrained by factors such
as supplier capacities, possible connectivity to the waterway ports, storage capac-
ities, capacity and availability of waterway transportation entities (e.g., towboat,
barge), waterway capacities, and many others. The main objective of our model is
to efficiently plan and manage the short-term operational decisions (e.g., trip-wise
towboats, barges management at the inland ports) and mid-term supply chain de-

cisions (e.g., inventory management, transportation decisions) in such a way that
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the overall supply chain network cost can be minimized. Figure 5.1 presents a sim-
ple illustration of an inland waterway transportation network consisting of three
suppliers of different commodities, two origin and three destination ports, and

four markets.

) H,. Y sujke » Ymbsje H k/ -
X .\mﬂ " g X
/ mijt | Xwmbsnjkt | -

Suppliers Origin Ports Destination Ports Markets
U] )] (k) @

Figure 2.1

Illustration of an inland waterway transportation network

Consider a logistic network £ = (N, P), where N represents the set of nodes
and P represents the set of arcs. Set A consists of the set of supply sites Z =
{1,2,3,..., I}, set of origin ports J = {1,2,3,..., ]}, set of destination ports K =

{1,2,3,...,K}, and a set of markets G = {1,2,3,...,G} ie, N = ZUJUKUG.
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Note that £ is not a fully connected graph i.e., not all nodes are fully connected
to each other primarily due to their disperse locations. Therefore, we define two
different types of subsets Z; and J; where Z; represents the subset of supply sites
connected to port j € J and J; to be the subset of origin ports that can receive
commodities from supply sitesi € Z. Likewise, subsets Jj, IC]-, K4, and Gy are used
to define the appropriate interconnections between the source-destination pairs.
Let M = {1,2,3,..., M} be the set of commodities that need to be transported
from supply site i € 7 to market ¢ € G using origin port j € J and destination
port k € K over a predetermined set of time periods 7 = {1,2,3,..., T}.

Let ¢,,;; be the amount of commodities of type m € M available in supply
site i € 7 at time period t € 7. Each arc (i,j) € (Z,J) carries commodities of
type m € M from a supply site i to origin port j and are generally located closer
to each other. Therefore, trucks are preferred to carry commodities between arc
(i,j) € (Z,J) by incurring an unit transportation cost of c;j;. Each shipment from
the supply sites are consolidated at an origin port j € J before being delivered to
the destination port k € K. We assume that a set of towboats S = {1,2,3, ..., §}
and barges B = {1,2,3,..., B} are available to carry the commodities from the
source to destination ports. Barges are flat-bottomed boats, either self-propelled
or towed by towboats or tugs, can serve as a container to transport commodities
between each source-destination pair. Each barge b € B is restricted to a weight
capacity of w;, and volume capacity of v,. Note that the volume restriction of

any barge is directly related to the density of any commodity {p }mem carried
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out by the barge. Towboats, another important component of inland waterway
transportation, are also flat bottomed and can be used to push one or multiple
barges in a single trip depending on their engine power capacity. We arrange set S
in such a way that towboat 1 in set S to represent the least powerful towboat while
S to represent the most powerful towboat. Based on their capabilities, we denote
s and é, to be the maximum and minimum number of barges that can be carried
by any towboat s € S in a single trip. Let i5; and 77,,,; be the fixed costs associated
with using a towboat s € S (e.g., operator costs) and barge b € B (e.g., loading and
unloading costs) carrying commodity m € M at time period t € 7. Further, we
define c¢ypsjk+ to be the unit cost associated with transporting commodity m € M
using barge b € B of towboat s € S along arc (j, k) € (J,K) at time period t € T.
Finally, we assume that the commodities can be stored in any port having storage
capacity E]- ;Vj € J UK, by incurring an unit inventory holding cost of h,,,j; and the
deterioration rate to carry the commodity of type m € M from one time period to
the next is denoted by a,.

We also define a set of possible trips along arc (j, k) € (J,K) as N}'k =1{123,..,
nj;}. Note that due to dredging effects, the weight carrying capacity of a barge w;
and possible trips (Tj;) between each source-destination ports varies. The depth
of navigation channel near ports or any points of the waterbody in between the
source-destination ports may vary in different time periods of the year depending
upon the amount of sediment, silt, or mud accumulated in the water bed. When

this accumulation is very high in any portion of the waterway; it raises the height
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of the waterbed. Hence, the total water depth of that particular area of the naviga-
tion channel decreases. Sometimes, this reduction in water level becomes too in-
tense that it even resists the transportation of shallow draft water vessels through
it. When this condition arises between the waterway of any origin-destination
ports, barges can no longer carry commodities to their maximum design weight
wy. The effective weight carrying capacity for the barge at that situation would
be the minimum of the maximum weight capacity of a barge at the origin port
wjt, destination port wy, and the channel in between each origin-destination ports
(j,k) € (J,K), denoted by Wik, i-e., min{w]-t, Wikt wyt, Wy }. Finally, we capture the
periodic maintenance of towboats and barges at each origin port j € J at time
period t € T through binary availability parameters asj; and a;;.

When commodities are carried by the towboats and barges to the destination
ports, they are unloaded and transported to markets ¢ € G using trucks by in-
curring an unit transportation cost of ¢;e;. Each market ¢ € G demands digt
amount of commodities of type m € M at time period t € 7. The demand for the
commodities are planned to satisfy through the inland waterway transportation.
In case if the demand cannot be satisfied through this transportation network, we
assume that another means of transport (e.g., trucks) are available to satisfy the
market demand by incurring an unit penalty cost of 71,¢¢. The definitions of sets
and parameters used in our proposed mathematical model are listed below.

Sets:

e 1: set of supply sites,i € T
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e J: set of origin ports, j € J

e K: set of destination ports, k € K

e G: set of markets, g € G

o M: set of commodities, m € M

e S: set of towboats,s € S

e [3: set of barges, b € B

e Nj: set of trips along arc (j, k) € (J,K), n € N

e T: setof time periods, t € T

e 7;: set of supply sites connected to port j, Vj € J

e J;: set of origin ports connected to supply site i, Vi € 7

o Ji: set of origin ports connected to destination port k, Vk € K
e Kj: set of destination ports connected to origin port j, Vj € J
o KCg: set of destination ports connected to market ¢, Vg € G

e G set of markets connected to destination port k, Vk € K

Parameters:

® ¢uir: amount of product of type m € M available in supply site i € Z at time
periodt € T

o U fixed cost of using towboat s € S at time period t € T

o upe: fixed cost for loading and unloading commodity m € M inbargeb € B
at time period t € T

® Cyefy: Uit cost of transporting commodity m € M alongarc (e, f) € (ZUK, T UG)
at time period t € T

® Cypsjke: unit cost of transporting commodity m € M using barge b € B of
towboat s € S along arc (j, k) € (J,K) at time period t € T

o E]-: commodity storage capacity at portj € J UK

o dygt: demand for commodity of type m € M in market ¢ € G at time period
teT
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e u;;: deterioration of commodity m € M
® asj;, ayjy: binary availability of towboat and barge
e 5, 6;; maximum/minimum number of barges to carry by towboat s € S

® Wi, Wik, Wiy: Maximum weight capacity at port j € J UK and the channel
between port (j, k) € (J,K) at time period t € T. This weight depends on
the depth of the waterway and should not exceed the minimal water-level
between the origin-destination ports

e o, density of commodity m € M
e vy,: volume capacity of barge b € B
e w;,: weight capacity of abarge b € B

® Tlmgt: unit penalty cost of not satisfying demand for commodity m € M in
market ¢ € G at time period t € T

® hyji: unit inventory holding cost for commodity m € M in portj € JUK
at time period t € T

e 0j;: total number of barges available in port j € J at time period t € T

® Tji: maximum number of trips that can be made along arc (j, k) € (J,K) at
time period ¢

Decision Variables:

o Yslnjkt: 1 if a towboat s € S is used in arc (j,k) € (J,K) for trip n € N at

time period t € 7; 0 otherwise

o Y2, j+ 1if commodity m € M is carried on barge b € B of towboat s € S

from port j € J at time period ¢t € T; 0 otherwise

e X,er: amount of commodities of type m € M transported along arc (e, f) €
(ZUK,TJUG) at time period t € T

® Xyupsnjkt: amount of commodities of type m € M transported using barge
b € B of towboat s € S of trip n € N along arc (j,k) € (J,K) at time
period t € T

e H,,j;: amount of commodities of type m € M stored in port j € JUK at
time period t € T
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o Uygt: amount of commodities of type m € M shortage in market ¢ € G at
time period t € T

We now introduce the following decision variables for our proposed mathe-

matical model formulation. The first set of decision variables Y! := {yl jkt\VS €

SneNpjeTkekKyteThandY = (Y, |Vm e MbeBseS,je

J,t € T} determine which towboat to use between any origin-destination pair in

a given time period and which barge to use for carrying any particular product at

any given origin port, respectively, i.e.,

1 if a towboat s is used in arc (j, k) € (J,K) for trip n at time period ¢

1
stjkt -
0 otherwise;
)
1 if barge b connected to towboat s is used to carry commodity m
YZ _ ce .
mbsjt — at port j in time period ¢
0 otherwise;

\

For notation simplicity, we define Y as Y := Y! |JY?. Additionally, we intro-
duce X! := {Xeft[Vm € M, (e, f) € (ZUK,TUG),t € T} to denote the amount
of commodities of type m € M transported along arc (¢, f) € (ZUK,JUG) at
time period t € 7 and X2 = {mesnjktwm e M,be B,se S,nc /\/]-k, (j, k) €
(J,K),t € T} to denote the amount of commodities of type m € M transported
using barge b € B of towboat s € S of trip n € N along arc (j,k) € (J,K)

at time period t € 7 and X := X!(JX% We also introduce decision variables
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H := {Hy|Vm € M,j € JUK,t € T} to identify the amount of commodities
of type m € M disjointly stored in both origin and destination port j € JUK
at time period t € 7. The amount of unsatisfied demand of any commodity
m € M inmarket ¢ € G at any given time period t € T is determined by variables
U := {Upgt|Vm € M, g € G,t € T}. With these variables, we now introduce the

inland waterway port management optimization problem [IMP] as follows,

[IMP] Z\/{{igz(igiize Z (Z Z Z Z ¢stYslnjkt + Z (Z Z Z Umbtyribsjt +

XHU T seS neNj jeJ kek; meM \beBseS jeJ
Z CmeftXmeft + Z Z Z 2 Cmbsjktmesnjkt
(e,N)e(ZTUK,TUG) beBseS neNy (jk)e(T,K)
+ Z hmthmjt + Z nmgt”mgt)) (2.1)
jeJUK 8€g

subject to

Z Xnijt < @utvm e M,i€ Lt €T (22)
j€Ti
Y Xpip+ (A —am)Hpjer = Y Y Y Y Xuwsnjkt + Hujt
i€Z; beBseS neNj kek;

Vme M,je J,teT (2.3)

Z Z Z Z mesnjkt + (1 - “m)Hmk,t—l = Z kagt + Hyge

beBseS neNy jeJi 8€Gk
Vvme M,ke K,t T (2.4)

Z kagt + Umgt = dmgNm c M,g eg,teT (25)

kekq
Z Hmjt
meM

IN

Wwie J UK teT (2.6)
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Y, Yousjp < WbeBseS,jed teT (2.7)
meM
Y Yo < 1VneNgjeT keKjteT 2.8)
seS
Z Z éSYslnjkt < Z Z Yiibsjt < Z Z Esyslnjkt
I’ZE./\/}'k kE’Cj meMbeB I’IG./V}'k kG]C]‘
VseS,jeJ, teT (2.9)
Y Xpenjee < min{wjy, Wiy, Wiy, Wy} ey Vm € M,
nE./\/}k
beBsesS,jedJ ke, teT (2.10)
X .
Y ¥ ( mbs"]kt) < wYopVmeMbeBseS,jeJ,teT (1)
ne./\/}k kGIC]' pm
Yo Y Yo < mkVieJkeKiteT (2.12)
seS neNj
Y, Y ) YVeuie < 6iVieJteT (2.13)
meMbeBseS
Y. ) Yslnjkt < apvVseS,jeJ teT (2.14)
neNy kek;
Y ) Y,;ibsjt < apVbeB,jeJ teT (2.15)
meMseS
Yopje € {01}VmeMbeBseS,jeJ, teT (216)

Ysln]'kt € {0,1}VseS,neNyje T keK,teT (217)
Xmijt/ ijkbsnt/ kagt/ Hmjt/ Hmkt/ umgt € IR+ (218)

In [IMP], the objective function minimizes the overall logistics cost for the
inland waterway transportation network. The objective function consists of six
terms: the first and second term represent, respectively, the fixed costs associated
with using towboats, and loading and unloading commodities into the barges.

The third term in the objective function represents the total transportation cost
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associated with transporting any commodity to and from any origin-destination
port using trucks. The costs incurred due to transporting commodities between
each origin-destination ports are captured by the fourth term in the objective func-
tion. The last two terms in the objective function specity the total storage cost and
penalty cost due to unsatisfied demand.

Constraints (2.2) indicate that the amount of commodity of type m € M trans-
ported from a supply site i € 7 at any given time period t € T is restricted by the
supply capacity ¢,,;;. Constraints (2.3) and (2.4) are the flow balance constraints
which ensure that at any given time period t € 7 the amount of commodity
of type m € M can be either shipped or stored in a source or destination port
j € J UK. Constraints (2.5) indicate that the demand for commodity m € M in
market ¢ € G at any given time t € 7 can be either completely or partially sat-
isfied through the inland waterway transportation network. If partially satisfied,
we assume that the balance commodities can be satisfied though external sources
via a higher penalty cost 7t;,q;. Constraints (2.6) restrict the storage quantity of
a given commodity m € M at portj € J K to its maximum storage capacity
E]-. The commodity mix restriction is handled by constraints (2.7) which indicate
that only one commodity of type m € M can be loaded in any barge b € B of
a given towboat s € S. Constraints (2.8) indicate that only one towboat s € &
can be used in trip n € N between each source-destination pair at a given time
period t € T. Constraints (2.9) set restrictions on the maximum (J5) and minimum

(05) number of barges that can be connected with any particular towboat s € S in
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port j € J at time period t € 7. The dredging issues are captured in constraints
(2.10). These constraints indicate that at any given time period t € 7 abargeb € BB
can only carry the minimum of {w]-t, Wikt Wiy, Wy, } amount of commodity between
each origin-destination port. The volumetric capacity restriction of a barge b € B
is handled by constraints (2.11). Constraints (2.12) restrict the maximum num-
ber of possible trips (Tjkt) between each origin-destination port. Constraints (2.13)
indicate the maximum availability of barges (0;;) in port j € J at time period
t € T. Barges and towboats can go for periodic maintenance. These are handled
in constraints (2.14) and (2.15) via binary availability parameters a5;; and ayj;, re-
spectively. Finally, constraints (2.16) and (2.17) are the integrality constraints and

(2.18) are the standard non-negativity constraints, respectively.

24 Solution Approach

By setting M| =1,[S| =1, [B] =1, [N)| =1, |T| = 1i.e, asingle commod-
ity, a single towboat, a single barge, a single trip, and a single time-period, problem
[IMP] can be simplified to a special case of a fixed-charge network flow problem
which is already known to be an N'P-hard problem [74]. Therefore, commercial
solvers, such as CPLEX/GUROB]I, can only able to solve small scale problem in-
stances of such problems. Our problem [IMP] involves solving a mixed-integer
linear programming model which can be considered very challenging from so-
lution standpoint depending on the size of sets |[M|, |Z|, | J|, |K|, |G|, |B|, |S|,

|Njkl, and [T|. To alleviate this problem, in this section, we first employ a well-
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known partitioning method, commonly referred to as Benders decomposition algo-
rithm [15, 83], to solve our proposed optimization model [IMP]. Later in this sec-
tion, we demonstrate multiple enhancement techniques to accelerate the perfor-
mance of the basic Benders decomposition algorithm and to solve problem [IMP]
efficiently. The techniques used to enhance the Benders decomposition algorithm
include problem-specific valid-inequalities, input ordering, pareto-optimal cut,
knapsack inequalities, and local branching procedure. The aim is to produce high-
quality feasible solutions for solving realistic-size instances of problem [IMP] in a

reasonable amount of time.

2.4.1 Benders Decomposition Algorithm

In Benders decomposition, the original problem can be decomposed into two
subproblems: an integer master problem and a linear subproblem. Before introduc-
ing the subproblemes, let us first present the underlying Benders reformulation for

model [IMP] as follows:

Minimize {2(2 Y Y Yelut X YN anth,ibsjt) +

teT \seSneNy jeJ kek meMbeBseS jeJ
[SP](X,H,U [Y¥', ¥ } (2.19)
subject to (2.2)-(2.18). We represent [SP] (X,H,U|Y1, Yz) as Benders subproblem,
which is presented below. For given values of Y= {Yslnjkt|s € Sne Nyje
J, ke K,teT}and Y= {Yébsﬁ\m e M,be B,seS,je J,t €T} which

satisfy integrality restrictions (2.16) and (2.17), problem [IMP] can be deduced to
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the following primal subproblem involving only continuous variables X, H, U as fol-

lows:

[SP] (X,H,U]Yl,Yz)MinimizeZ Z( Z Ponjt Hinjt + Z Cneft Xmeft

XHU (e meM \jeTUK (e.f)e(ZUK,TUG)
+ Z Z Z Z Crnbsjkt Xmbsnjkt + Z ﬂmgtumgt) (2.20)
beBseS neNj (jk)e(T.K) g€g

subject to constraints (2.2)-(2.6), (2.10)-(2.11), and (2.18). We let 4 = {pir >
OVvme M,ieZ,t €T}, &= {0u|Vme M,je€ J,t €T}, and § = {{pupe|Vm €
M,k € K,t € T} be the vector of the dual variables associated with constraints
(2.2)-(2.4); € = {emgt|Vm € M, g € G,t € T} be the dual variables for constraints
(25);k = {xy > 0|Vj € J,t € T}yandt = {y; > 0|Vk € K,t € T} be the dual
variables for constraints (2.6); and § = {Gupsjie > 0|Vm € M,b € B,s € S,j €
J ke K,teTyand x = {Xmpsjt > 0|Vm € M,bc B,s € S,jc J,tcT}bethe

vector of the dual variables associated with constraints (2.10)-(2.11). We present

the dual of the primal subproblem [SP], referred to as [DP], as follows:

[DP]  Maximize y_ ( Y <Z Angi€mgt — Y Pithmit — Y, Y Y (Z

teT \meM \geg i€l beBseSjeJ “kek

. e ~o _
mm{wjt/wjkt/ Wkt, wb}Ymbsjt‘:mbsjkt + Umebsthmbsjt)) - Z hikcjs
jeg

-y Eklkt) (2.21)

kex
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subject to

—Hmit + Omjp < cmip VmeM,ie€ZL,je J,t € T(222)

—Omjt + Cmkt — Cmbsjkt — XZ::jt < skt Vm e M,beB,s€S,je T,
ke Kj,teT (2.23)
(1— ocm)ﬁm]-,tﬂ —Opjt — kit < hpp VmeM,jeJ,teT (2.24)
(1= )1 — Gkt — ket < He VmEMEK tET  (2.25
—Cokt tEmgt < Cukgr VM E M,k€ K, g€ G, t € T2.26)
Emgt < Tmgt VmeEM, g€ G, teT (2.27)
Momits Kjts ks Combsiits Xmpsjt € R (2.28)
Omjts Couktr Emgt - € R (2.29)

Now, in the underlying Benders reformulation, we can introduce an additional
free variable 6 and define the following Benders Master problem [MP]:

Pl Miggize (LY ¥ F i+

teT \seSneNy jeJ kek;

ISP nmthibsﬁ) +6 (2.30)

meMbeBseS jeJ

subject to constraints (2.7)-(2.9), (2.12)-(2.17), and

6 > Z < 2 <2 dmgtemgt - Z PmitHmit — Z Z Z (vbyibsjtxmbsjt

teT \meM \geg ieT beBseSjeT

+ Z min{w]-t,w]-kt, wkt/wb}yibsjtgmbsjkt>> - Z Ej’cjt - Z ;_lklkt)

ke

jeJg kek
V(u,e x, ¢ x,1) € Pp (2.31)
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Constraints (2.31) are referred to as optimality cut constraints where Pp is the
set of extreme points in the feasible region of [DP]. The objective function value of

[DP] bounds the variable 6 from above i.e.,

0 > Z ( 2 <2 dmgtemgt - 2 Pmit Wmit — 2 Z Z (vbygqbsjt)(mbsjt

teT \meM \geg i€l beBseSjeJ

+ Y min{wj, i, wkt,wb}Yibsthmbsjkt)) — Y hikip— Y Ek‘kt)

kek jeg kek
V(u,e,x,8,%,1) € Pp

Note that, no feasibility cut is added in [MP] since for any feasible solutions of
Y, constraints (2.5) ensure that primal subproblem [SP] (X,H,U|Y1, YZ) will always
remain feasible. Moreover, since parameters Cyijt, Cpsjkts mjt, Nmkts Crkgt, and
Ttmgt are finite, any feasible solution of [SP] (X,H,U\Yl, YZ) must be bounded. By
strong duality theory, we can state that the dual subproblem [DP] will also remain
feasible and bounded.

The overall Benders decomposition algorithm is outlined below. Let UB" and
LB" be an upper and lower bound for the original problem [IMP] which are ob-
tained during the Benders decomposition algorithm at each iteration r. We also

define ZT]’VI g @s follows:

fus = L(5 8 L X vl t ¥ T8 T i)

teT \seSneNj jeJ kek; meMbeBseS jeJ
(2.32)
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In Benders decomposition algorithm, we iteratively solve master problem [MP]
to obtain the solutions {Ysl,:jkt}seS,neNjk,jej,keIC,teT and {?,irbsjt}meM,beB,seS,jej,teT-
The objective function value obtained from solving [MP] provides a valid lower
bound for the original problem [IMP], which is denoted by zj,,. We then fix the

values of {Y1r

snjkt} and {Y?

i jt} to solve the dual subproblem [DP]. In each itera-

tion r of the Benders decomposition algorithm, the summation of z); , 5 (obtained
from the master problem) and z¢;;; (obtained from the subproblem) provides a
valid upper bound for the original problem [IMP]. The overall Benders decompo-
sition algorithm is terminated when the gap between the upper and lower bound
falls below a pre-specified threshold limit €; otherwise, the optimality cut (2.31)
is updated and added to the master problem [MP]. Note that the Benders refor-
mulation contains an exponential number of constraints that can been handled
through a cutting plane approach. Let Pf, be the restricted set of extreme points
of D at iteration r. Thus, the relaxed master problem [MP] is solved containing
a small subset of the constraints in (2.31) i.e.,, P, C Pp and gradually add them
until the gap between the upper and lower bound falls below the threshold limit
€. The pseudo-code for the basic Benders decomposition algorithm is provided in

Algorithm 1.

2.4.2 Enhancement of Benders Decomposition Algorithm
2.4.21 Valid inequalities

By utilizing the special structure of our problem [IMP], we generate a number

of valid inequalities that can be used to accelerate the performance of the over-
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all Benders decomposition algorithm. The following set of valid inequalities are
added in each iteration of the Benders master problem [MP]:

e The following surrogate constraints (2.33) are added in each iteration of the
Benders master problem [MP] which provide a lower bound on the number
of barges required to satisfy commodity demand m € M at time period
t € T. Here, we can initialize the value of 0 between 0.0 to 1.0. When o = 1.0,
constraints (2.33) ensure that all the demand is required to be satisfied from
the inland waterway port network.

Yo X Y Yo@r > ) odg: VmeM,teT  (233)
beBseSjeJ 9€G

e Symmetries may result during the selection of the barges since all the barges
are of similar capacities. To alleviate this problem, the following lexicographic
ordering constraints [122, 63] ((2.34) and (2.35)) are added in each iteration of
the Benders master problem [MP] that set priorities by which the solver can
select the barges. It is expected that such priorities will break the duplica-
tions caused by the barge selection symmetry and accelerate the performance
of the branch-and-bound process.

Yip1gt = Yins Vb e B\{1},s€S,je J,t € T34)
m m
Y22 > Y 2PV e Mb e B\{1},5 €S,
p=1 p=1

jeJ, teT (235

¢ In addition to handling symmetries that can arise while selecting barges, we
also handle the possible symmetries that may arise between same type of
towboats. Let S, be the subset of towboats belongs to the same type i.e.,
S, C Sands, € S,, where s, represents a set of non-decreasing order of the
members belongs to S,. The following lexicographical ordering constraints
((2.36) and (2.37)) are applied for each Sé, to determine the priority of utilizing
towboats of the same type.

1 1 / ' ;
Ysé—l,njkt > Ysén]_kt Vs, € S\ {1}, n € Ny, je€ J, ke K,t e T(2.36)

1 1 / / .
‘/’sé—l,tYs;_Lnjkt > lpsétYsénjktVSe €S\ {1},ne Ny, je J ke K, teT237)

e The following set of constraints, (2.38) and (2.39), set a lower bound on the
number of barges that are required to satisfy the demand between time in-
terval [t1,tp] where t, > 1. These constraints indicate that if the sum of the
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demands over period [f1, 7] is greater than or equal to the maximum pos-
sible inventory held (k) or initial inventory (H,xo), then there has to be at
least a certain number of barges used in that time interval:

ta _
deg tZt Udmgt - ZkelC hk
=t

Yy Y Y2, > _

beBseS jeJ t=h Wy

V

Vm € M, (tl, tz) €T, thp > £1(2.38)

] L
Ygeg tZt 0dmgt — Lkex Hmko
=h

Yy Y Y2, > _

beBscS jeJ t=h Wy

Vm e M, (tl, tz) e T,tr > 1(2.39)

e Likewise, constraints (2.40) and (2.41) set lower bounds on the number of
towboats to be used between any time interval [t1, f] where t; > t;. Here, 65
represents the capacity of the most powerful towboat S.

i ) _
YmeM deg tzt ‘Tdmgt — Yokek I
=

FY LYY, >

seSneN jeJ kek t=t wb3§
V(fl, tz) eT,th>H (2.40)

] .
LimeM (deg tg Odmgt — Lkek Hka)
=

Y YT Y,

seS neN jeJ kek t=h W05

v

v(tll tZ) S T/ %) > tl (241)

2.4.2.2 Knapsack inequalities

Santoso et al. [119] show that, if the Benders decomposition algorithm gen-
erates a good upper bound, adding a knapsack inequality of the following form
along with the optimality cut constraint (2.31) can significantly impact the solution

quality obtained from the Benders master problem. Further, the state-of-the-art
36

www.manaraa.com



solvers, such as CPLEX, GUROBI, can derive a variety of valid inequalities from
the knapsack inequality [119]. These derived inequalities may help to expedite the
convergence of the overall Benders decomposition algorithm. Let UB" denote the
best known upper bound obtained during the first r iterations of the Benders decom-
position algorithm. The following knapsack inequality can be added to [MP] in

iteration r + 1:

us" > Z ( Z (Z dmgtemgt - Z PmitHmit — Z Z Z (’UbYT%?bsji’mesjt

teT \meM \ge§ i€l beBseSjeJ
. J— 2 e -
+). mm{wjt,wjkt,wkt,wb}Ymbsthmbsjkt)) — Y ki — Y gl
kel jeJ ke
1 2
L oL L L vVt X)), anthmbs,-f) (242)
s€S neNj jeJ kek; meMbeBseS jeJ

Likewise, let LB denote the best known lower bound obtained till iteration r of
the Benders decomposition algorithm. To speed up the branch-and-bound proce-
dure of the solver, the following inequality can be added in each iteration of the

Benders master problem [MP] starting from iteration r + 1:

LB’ < Z (Z Z Z Z ¢5stlnjkt+ Z Z Z Z mety;ibsjt) +9(2'43)

teT \seSneNy jeJ kek; meMbeBseS jeJ

2.4.2.3 Pareto-optimal cuts
Pareto-optimal cuts, first introduced by Magnanti and Wong [74], are added to
the master problem to improve the convergence of the Benders decomposition al-

gorithm. In each iteration of the Benders decomposition algorithm, these cuts are
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generated in such a way that they will be stronger and non-dominated over the
cuts generated previously. However, this technique heavily relied on the solu-
tion obtained from the dual subproblem. To overcome this problem, Papadakos
[104] proposed an approach that generates subproblem independent pareto-optimal
cuts, commonly known as the modified Magnanti-Wong (MMW) pareto-optimal cut.
In this research, we have used this subproblem independent pareto-optimal cut as
proposed by Papadakos [104]. We refer to this subproblem as [DP(MMW)].

Let YL be the polyhedron defined by (2.7)-(2.9)and (2.12)-(2.15), 0 < {Yibsjt}mEM,
beBseSjegter < 1and 0 < {Yslnjkt}ses,ne/\fjk,jej,kelc,teT < 1. Let ri(Y*") denote
the relative interior of Y'¥. A Pareto-optimal cut can be obtained by solving the
following subproblem where y2(core) € ri(YLP),' Vme M,be B,seS,je J,te

mbsjt

T.

[DP(MMW)] Maximize Z ( Z (Z dmgt€mgt — Z Pmit Bmit — Z Z Z

teT \meM \geG i€l beBseSjeJ
. — 2(core 2(core
( 2 mm{wjtz Wikt Wkt wb}Ym(bsjt )Cmbsjkt + Ume(bsjt )mesjt) )
ke
— Z h]'K]'t - Z hklkt) (2.44)
jeJg keK
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subject to

—Mmit +O0mjt < Cpip YmEM,i€L,j€ J,t € T(245)
—Omjt + Cmkt — Cmbsjkt — X:::jt < CppsjtVm e M,be B,seS,je J,
ke KjteT (2.46)
(1-— lxm)lgm]'/t+1 —Opjt — it < hpjp VmeM,jeJ,teT (2.47)
(I —am)Cnkps1 — Cmkt — ket < hyy  Vme M, ke K, teT (2.48)
—Cmkt +Emgt < Cukgt VM EM,kEK, g€ G,t € N249)
Emgt < Mgt VmeM,ge G teT (2.50)
Momits Kjts ets Combsiicts Xmpsjt € R (2.51)
Omits Couktr Emgt - € R (2.52)

In [DP(MMW)], {Yi(bcs(};e) }me M peB,ses,jeg reT denote the core points which we

initialized as Yy « 1;Vm € M,b € Bs € S,j € J,t € T[104, 105].

Later, in each iteration of the Benders decomposition algorithm, we update the

core points as follows: Yi(bcs‘;.:e) = TYi(bCSOjZE) +(1- T)?ibsjt,‘ vm € M,b € B,s €

S,j € J,t € T. Here, Y2

wibsjt refers to the solution obtained from solving the

Benders master problem. Depending on the results of multiple experimentation,
authors suggest to set T = 0.5 which provides the best empirical results for [IMP].
The generation of pareto-optimal cuts require solving two linear subproblems
in one iteration, i.e., use {?ibsjt}me MbeBses,jegteT to solve [DP] and then use
{Yi(bcsc;f) YmeMpeBses, jeg et to solve [DP(MMW)]. Papadakos [104] claimed that

this modified Magnanti-Wong pareto-optimal cut is independent from the solutions
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of the dual subproblem [DP] which results the Benders master problem to be one

step closer to the optimal solution from the very first iteration.

2.4.24 Inputordering

Jans and Desrosiers [64] showed that the order at which the input data are
loaded into a model can have a major impact on the Linear Programming (LP) re-
laxation, node exploration, and ultimately to the solution time of the overall prob-
lem. In this research, we use this concept to rank the destination ports based on their
potentiality to serve customer demands throughout the entire planning horizon.
Essentially, the ports with high potential for customer demands are ranked first in
the input file in an attempt to quickly obtain a lower bound for the Benders mas-
ter problem [MP]. Since the demand for different commodities dy¢t are set on the
markets ¢ € G rather than the destination ports, we made a demand projection at
each destination port k € K based on the arcs connecting them to the markets (Gy).
Figure 2.2 is used to provide a numerical illustration of this projection which is
consisting of four destination ports (ki-k4) and twelve markets (g1-g12). The arrow
head represents all possible arcs between each source to destination pairs. Based
on Figure 2.2, the potential demand for each destination port k € K can be cal-
culated by summing the demand for all commodities in the markets connected to
them during the entire planning horizon. For instance, a demand projection for
port k, can be made as follows: }_,,c p gi YteT dmgt = 12,000 tons. We use this

=84

8=8&
approach to project the demand for the remaining ports. Based on this projected
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demand, we sort all destination ports k € K in a descending order and place them

accordingly in the input file.

g1 92 93 9a 9s YGe 97 9Gs YGo G100 911 912

5,000 1,500 2,500 1,900 4,000 2,600 3,500 2,800 1,800 3,200 1,500 2,800

Figure 2.2

Customer demand sorting

2.4.2.5 Local Branching

The earlier iterations of the Benders decomposition algorithm suffers from slow
convergence i.e., the gap between the upper and lower bound drops slowly even
after the incorporation of pareto-optimality cuts. To alleviate this problem, we uti-
lize local branching procedure, initially proposed by Fischetti and Lodi [41] and later
utilized by Rei et al. (2009) [116] under the classical Benders framework, in an at-
tempt to accelerate the performance of the Benders master problem [MP]. The core

concept lies in local branching is to divide the entire feasible region into a series
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of smaller subproblems which can be solved by any generic solver (e.g., GUROBI,
CPLEX) within an acceptable time limit. Below we provide a brief discussion of
the local branching procedure.

The local branching procedure begins with a feasible solution Y of [MP] and
a positive integer parameter k,. This feasible solution serves as a reference point
to create local branching subproblems. Let Y' be an optimal solution of the master
problem [MP]. We can divide the feasible region of [MP] into the following two

reduced subproblems.
AY,Y) <k, V AY,Y)>ko+1 (2.53)

We use GUROBI to solve the reduced subproblem of [MP] which is created by
adding the left branching constraint presented in the first part of constraint (2.53).
This reduced subproblem is referred to as left branching subproblem. The succinct

representation of constraint (2.53) can be expanded as follows:

o1
A(Y/Y ) = Z Yslnjkt + Z (1 - Yslnjkt) +
(s,10,1,k.t) Eys (s,m,jk,t) €y’
Z Yr%ibsjt + Z (1 - Yr%bsjt) < kU (2'54)
(m/blslj/t)gy;n (m,b,S,]’,t)ey;n

where v} and y!, are defined as follows: i} = {Yslnjkt =1|Vs € S,n € Ny, j €
J,kekK,teTyandy, = {Yibsﬁ =1lVm e M,be BsecS,je J,te T}
The solutions of Y2, ikt and Y2, it obtained by solving [MP] at iteration /, are used
to construct constraint (2.54), which are then applied to iteration [ + 1. Let,Y* bea

solution of the local branching subproblem which can be obtained by setting a time
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limit TL and optimality gap €. Typically, the value of k, is set to a small number
which will allow local branching to quickly explore different feasible regions of
[MP]. After solving the local branching subproblem, depending on the status of

the optimizer one of the following cases might arise.

e Case 1: If an optimal solution is found for the current local branching sub-
problem within a predefined timelimit TL and optimality gap €, the left
branching constraint should be replaced by the right branching constraint
ie, AY, Yl) > ky + 1. At this point, we will update the reference point Y!
to Y and apply the branching condition based on this new reference point.
Therefore, the new left branching condition would be A(Y, Yz) < ky.

e Case 2: The second case arises when the current subproblem is proven in-
feasible. In this case, we replace the left branching constraint with the right
branching constraint i.e., A(Y, Yl) > ky + 1. In this situation, we apply a
diversification procedure (dy) through increasing the size of the feasible so-
lution region by [k, /2] i.e., (ky + [ky/2]). The local branching procedure is
then continued with this new extended solution space.

e Case 3: If the feasible solution of the current subproblem is improved, but
not optimal, at the end of the time limit TL, the left branching constraint will
be eliminated without adding the right branching constraint. Moreover, a
tabu constraint A(Y, Yz) > 1 will be added to remove Y* from the current
subproblem. Next, we create a new subproblem by adding the left branch-
ing constraint with the new reference point A(Y, Yz) < k, and the process
continues.

e Case 4: In this case, we check if the subproblem exceeds the predefined time
limit TL without improving the objective function value. If yes, the right
hand size of the left branching constraint will be decreased by one, i.e., k, — 1,

and the tabu cut will be added to ensure that Y* will not be considered in
further. We then solve the current subproblem in an attempt to find a better
solution. If no improved solution is found, we re-operate the diversification
procedure that will enlarge the size of the feasible region.

Note that at the beginning of the local branching procedure, we add the tabu
constraint A(Y, Yl) > 1 in [MP] to ensure that the previously explored solutions

are not repeated in the current iteration. Let Ny, and iter,;,x be the maximum
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number of diversification and iteration, respectively, for the local branching pro-
cedure. We further denote Y}, to store the h'" feasible solution obtained during any
iteration of the local branching procedure. At the end of the local branching proce-
dure, we update the lower bound of the Benders decomposition algorithm by eval-
uating [MP]’s objective function using the feasible solutions Y;, obtained through
the local branching procedure. The pseudo-code of the overall local branching

algorithm is presented in Algorithm 2.

2.5 Experimental Results

This section conducts a computational study on model [IMP] to test the perfor-
mance of the proposed Benders decomposition algorithm and to draw managerial
insights. The proposed mathematical model and the solution algorithms are coded
in python 2.7 on a desktop with Intel Core i7 3.6 GHz processor and 16.0 GB RAM.
The optimization solver used is Gurobi Optimizer 6.5°. The following subsection
present the performance of the accelerated Benders decomposition algorithm for
realistic test instances. Additionally, in subsection 2.5.2 we demonstrate a real life
case study considering four states in the Southeast region of the United States,
namely, Arkansas (AR), Louisiana (LA), Mississippi (MS), and Tennessee (TN) to
visualize and validate the modeling results. The input parameters used in this

case study are discussed in subsection 2.5.2.1. All costs are calculated based on

3 Available from: http://www.gurobi.com/
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2018 dollars value. To the end subsection 2.5.2.2 reports the managerial insights

drawn from our experimental study.

2.5.1 Analyzing the Performance of the Solution Algorithms

This section presents our computational experience in solving model [IMP] us-
ing the algorithms proposed in Section 2.4. We assess the performances of differ-
ent accelerated techniques within the standard Benders decomposition algorithm
and compare their computational efficiency with Gurobi. Table 2.1 summarizes
the problem instances considered for analyzing the performance of the solution
algorithms. We vary set |Z|, |71, |K|, |G|, |S|, |Nj|, and | T to obtain 20 different
problem instances. The following criterion are set to terminate the algorithms: (i)
the optimality gap (i.e., € = |UB — LB|/UB) falls below a threshold value (e.g.,
e = 0.01); or (ii) the maximum time limit (#,4y) is reached (e.g., tax = 10,800 CPU
seconds); or (iii) the maximum iteration limit (7,y) is reached (e.g., rmax = 500).
To help the readers follow our approaches, we have used the following notations

to represent the algorithms:

e Benders+VI: Benders decomposition algorithm + valid inequalities

e Benders+VI+KI: Benders decomposition algorithm + valid inequalities +
knapsack inequalities

¢ Benders+VI+KI+PO: Benders decomposition algorithm + valid inequalities
+ knapsack inequalities + pareto-optimal cuts

e All cuts: Benders decomposition algorithm + valid inequalities + knapsack
inequalities + pareto-optimal cuts + input ordering + local branching
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Table 2.2 summarizes the computational performances between different en-
hancements of the Benders decomposition algorithm with Gurobi using the test
instances presented in Table 2.1. The column headings t(s), tpp(s), €(%), and r
represent running time of the algorithm, running time of the master problem, op-
timality gap, and number of iteration for each respective algorithm. Note that, in
reporting the computational performance of the algorithms, we highlighted the
algorithm /Gurobi which is solved in less than the stopping criteria € while si-
multaneously producing the smallest running time (represented by f(s) in Tables
2.2 and 2.3) for a given test instance. Otherwise, if such a quality solution is not
found within the maximum time or iteration limit, the algorithm /Gurobi with the
smallest optimality gap (represented by €(%) in Tables 2.2 and 2.3) is highlighted.

In the following, we summarize our observations for combined Tables 2.2 and 2.3):

e Clearly, Gurobi outperforms all variants of the Benders decomposition al-
gorithm to solve small/medium scale problem instances (e.g., Case 1-7, 11-
13, 16, 17) by obeying the pre-specified termination criterion. For those in-
stances, the solver generates solutions with an average optimality gap of
0.82% and solution time of 491 CPU seconds, which are significantly lower
than different variants of the Benders decomposition algorithm. However,
for larger instances (e.g., Case 8-10, 14, 15, 18-20), the solver was unable to
produce any results due to getting out of memory in solving model [IMP].

e Introduction of knapsack inequalities (Benders+VI+KI) slightly improves the
performance of the Benders+VI algorithm in solving smaller test instances
(e.g., Case 1-7) for problem [IMP]; however, both Benders+VI and Ben-
ders+VI+KI algorithms are unable to produce any satisfactory results for
relatively medium to large sized problem instances. Note that we did not
report any computational results for standard Benders decomposition algo-
rithm since the algorithm is unable to solve any problem instances reported
in Table 2.1.
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e We observe significant improvement in computational performances over
Benders +VI and Benders+VI+KI algorithms when pareto-optimal cut is in-
troduced in Benders+VI+ KI+PO. Results in Tables 2.2 and 2.3) show that
algorithm Benders+VI+KI+PO is now capable of solving 17/20 problem in-
stances, over 7/20 instances solved by both Benders+VI and Benders+VI+
KI algorithms, within the prespecified termination criterion. On average,
algorithm Benders+VI+ KI+PO drops the running time of Benders+VI+KI
algorithm by 37.1 % with an average optimality gap of 1.16%. Finally, we
note that algorithm Benders+VI+KI+PO is capable of solving 8/20 problem
instances within an acceptable optimality gap for which Gurobi gets out of
memory.

e Results in Tables 2.2 and 2.3) indicate that the introduction of input ordering
and local branching in All cuts algorithm consistently produces high qual-
ity solutions over different variants of the Benders decomposition algorithm.
On average, algorithm All cuts is 24.23% faster than algorithm Benders+VI+
KI+PO while producing an average optimality gap of 0.55%. Further, the
algorithm provides superior computational performances in solving large-
scale problem instances when Gurobi gets out of memory. Note that the intro-
duction of input ordering itself slightly improves the performance of the All
cuts algorithm. Therefore, we did not show a separate column to demon-
strate the computational performance of this variant of the Benders decom-
position algorithm. This implies that majority of the improvements in All
cuts algorithm is mainly contributing by the local branching technique. More-
over, as implied by columns #yp(s) in Tables 2.2 and 2.3), different variants
of the Benders decomposition algorithm utilize on average 80.0-95.2% of its
running time to solve only the Benders master problem.

To summarize, algorithm All cuts seems to offer high quality solutions con-
sistently in solving [IMP] within the experimental range. Since, the performance
improvement using algorithm All cuts is due to the inclusion of local branching,
in Tables 2.4 and 2.5 we detail the comparisons between few settings of this local
branching technique. We pick instance 3 and 18 from Table 2.1 as a representative
of small instance and large instance, respectively. From Table 2.4 it is clearly visible

that with the larger value of k, and Ny;,,, the performance of this algorithm drops

i.e., the selected instance needs more time to solve. On the other hand, Table 2.5
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shows the benefit of having a higher k, and Nj;;, while solving the large instance.
In both tables we highlight the setting with the lowest solution time. While con-
ducting experimentation for large instance we noticed that higher k, and Nj;, pro-
vide quicker solution time, therefore, we increased the k; to one more step k, = 4
that was not necessary for the small instance. Finally, in running the experiments
reported in Tables 2.2 and 2.3) we used the understanding obtained from Tables 2.4
and 2.5 and selected different values of k, and Nj;, as appropriate. To be specific
we used k, value ranging from 2 to 6 in applying algorithm All cuts.

Our experimental results in Tables 2.2 and 2.3) can be easily validated by fol-
lowing the studies of Fischetti and Lodi [41], Rei et al. [116], and Gonzalez et
al. [49]. Fischetti and Lodi [41] conducted a comprehensive experimentation that
demonstrates the performance of Local Branching as an exact metaheuristic ap-
proach. Authors solved multiple MIP test instances and showed the performance
of Local branching in solving them. Gonzalez et al. [49] applies Local branch-
ing techniques for multiple random test instances and perform statistical analysis
to observe the statistical significance of this technique. To observe the statistical
significance of our experimental results obtained in Table 2, we perform paired
Wilcoxon signed rank test between Enhanced Benders decomposition algorithm
variant with local branching (algorithm All cuts) and without local branching (al-
gorithm Benders+VIQ+KI+PO). The test verifies whether the optimality gap and
the mean solution time obtained by the Benders+VIQ+KI+PO and All cuts shown

in Table 2 are same or significantly different. We are interested in administering
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two tests, one for the optimality gap (Test 1) and another one for the mean solution
time (Test 2). The null hypothesis, alternative hypothesis, and obtained p-values
for these two tests can be seen in Table 2.6. Note that before applying the Wilcoxon
signed ranked test, we verified all assumptions of this test. The first and second
test shows the p-value of 0.000293 and 0.0001974, respectively which confirms the
superiority of the proposed local branching strategy (algorithm All cuts) in terms

of both solution quality and time under our current settings.
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Algorithm 1: Benders Decomposition Algorithm

Initialize, r <~ 1, €, UB" < +o00, LB" <~ —o0, P}, < 0
terminate <— false

while terminate = false do

Solve [MP] to obtain the values of {Yslrfjkt}ses,ne/\fjk,jej,kelc,teT ,

2 .
{Ymrbsjt}meM,beB,seS,jej,teT/ Zypr and Zhy 4 5

if Z’MP > LB then
| LB" < z)p

end
For fixed {Y/sl,:jkt}seS,neNjk,jeJ,keIC,teT and {Y;%;sjt}meM,beB,seS,jeJ,teT
solve [DP] to obtain (pmit, Kjt, tkt, Smbsjkts Xmbsjt: Omjts Gmkes Emgt) € P
and zg; ;5
if zg ;5 + Zy 14 < UB" then
UB" <z + Zjiass
end

if % < € then

| terminate < true

else

1
| PR = P UL (imits Kt thts Embsjes Xmbsjts Omjts Skt Emgt) }

end

r<—r+1

end
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Algorithm 2: Local Branching Algorithm

Initialize, rhs < ky, iter < 1,dy < 1, diversify < false, h < 1, Y, < @, TL, e
Add A(Y,Y') > 1

while (iter < iterpay) V (dy < Nyjp) do
Add A(Y,Y') < rhs

Solve the local branching subproblem and obtain Y

if Case 1: optimal solution is found within defined TL and gap €} then
Reverse the last local branching constraint as A(Y, Yl) >ky+1

Y« ¥? diversify < false, rhs < ky, Yj, < Y2, b b+ 1, iter « iter +1

end

if Case 2: subproblem is infeasible then

Reverse the last local branching constraint into A(Y, Yl) >ky+1
rhs < ko + | 5 | do < do+1
end

if Case 3: solution is suboptimal then

Remove the last local branching constraint A(Y, Y <k,
Add A(Y,Y') > 1 to the current problem

Y« Y2 diversify < false, rhs < ky, Yj, + Y2 b b+ 1, iter < iter +1

end

if Case 4: subproblem reached timelimit T L without improvement then

Remove the last local branching constraint A(Y, Yl) < ky
Add A(Y, Yl) > 1 to the current problem

if diversify then
| dy<+dy+1,vhs <k, +1

else
| rhs +ky,—1

end

diversify < true
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Table 2.1

Problem size and test cases

Binary = Continuous Total No. of
Case |Z| |J| K] |G] S| |Nil |T|

variables variables variables  constraints
1 40 5 5 40 15 15 4 135,000 4,507,200 4,642,200 379,700

2 40 5 5 40 15 15 8 270,000 9,014,400 9,284,400 759,400
3 40 5 5 40 15 15 12 405,000 13,521,600 13,926,600 1,139,100
4 40 5 5 40 15 15 16 540,000 18,028,800 18,568,800 1,518,800

5 40 5 5 40 15 15 20 675,000 22,536,000 23,211,000 1,898,500

6 40 8 8§ 40 15 15 4 288,000 11,531,136 11,819,136 896,288
7 40 8 8 40 15 15 8 576,000 23,062,272 23,638,272 1,792,576
8 40 8 8§ 40 15 15 12 864,000 34,593,408 35,457,408 2,688,864
9 40 8 8§ 40 15 15 16 1,152,000 46,124,544 47,276,544 3,585,152

10 40 8 8 40 15 15 20 1,440,000 57,655,680 59,095,680 4,481,440

11 83 13 8§ 43 10 10 4 312,000 8,343,792 8,655,792 972,704
12 8 13 8§ 43 10 10 8 624,000 16,687,584 17,311,584 1,945,408
13 83 13 8§ 43 10 10 12 936,000 25,031,376 25,967,376 2,918,112
14 83 13 8§ 43 10 10 16 1,248,000 33,375,168 34,623,168 3,890,816

15 83 13 8 43 10 10 20 1,560,000 41,718,960 43,278,960 4,863,520

16 83 13 13 43 10 10 4 442,000 13,547,312 13,989,312 1,495,664
17 83 13 13 43 10 10 8 884,000 27,094,624 27,978,624 2,991,328
18* 83 13 13 43 10 10 12 1,326,000 40,641,936 41,967,936 4,486,992
19 83 13 13 43 10 10 16 1,768,000 54,189,248 55,957,248 5,982,656

20 83 13 13 43 10 10 20 2,210,000 67,736,560 69,946,560 7,478,320

“Representative problem size for the real life case study.
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Table 2.4

Comparison between different settings of local branching (for small instance)

Instance ky N ts) €(%)

2 1408 0.16
2 3 1,389 0.18

4 1,376 0.18

Small Instance
2 1,498 0.33

3 3 1,750 0.35

4 1,810 0.39
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Table 2.5

Comparison between different settings of local branching (for large instance)

Instance ky N t(s) €(%)

2 8420 0.96
2 3 8398 0.89

4 8480 0.95

2 7,620 0.87
Large Instance 3 3 7457 0.86

4 7,680 0.90

2 7180 0.98
4 3 6429 090

4 6490 0091
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Table 2.6

Results of Wilcoxon signed rank test

Test 1

Test 2

There is no significant difference between the
Null Hypothesis
quality of the solution found with algorithm
(HO)
Benders+VIQ+KI+PO and algorithm All cuts

The solution quality obtained with algorithm
Alternative Hypothesis

There is no significant difference between the
solution time required to solve [IMP] using algorithm

Benders+VIQ+KI+PO and algorithm All cuts

The solution time required to solve [IMP] using

All cuts are significantly better than that found algorithm All cuts is significantly faster than that

(D by algorithm Benders+VIQ+KI+PO needed by algorithm Benders+VIQ+KI+PO
p-value 0.000293 0.0001974
Confidence level 99% 99%
Significance level 0.01 0.01

2.5.2 Case Study

This subsection demonstrates a real life case study considering four Southeast
U.S. states, Arkansas (AR), Louisiana (LA), Mississippi (MS), and Tennessee (TN).
In our case study, we considered thirteen waterway ports along Mississippi river
as origin ports (|7| = 13) and destination ports (|| = 13). The set sizes related
to this case study is reported in Table 2.1 (case 18)*. In the next few subsections
we introduce the case study region and the network parameters used in this case
study. Note that, in order to solve this case study and perform sensitivity analysis,
we used the algorithm that performs best in solving case 18 following Table 2.2,

i.e., All cuts.

A sample dataset can be downloaded from https://www.farjananur.net/
publications
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2.5.2.1 Data Description

Inland Waterway Port Location: This study considers a total of thirteen inland
waterway ports along the Mississippi River. Figure 5.2 shows the geographical lo-
cations of the ports considered in this study. Among them five ports, namely,
the Port of Rosedale, Port of Greenville, Port of Vicksburg, Port of Natchez, and
Port of Yazoo County, are located in Mississippi. Note that the first four ports
are located alongside the Mississippi River, whereas the Port of Yazoo County is
situated along a stream flowing from the Mississippi River. We exclude the Port
of Claiborne County from further consideration since the facility is currently un-
available for operation [85]. Besides these ports, we consider the Port of Geis-
mar Louisiana, Port of Greater Baton Rouge, Port of South Louisiana, and Port of
Gramercy from Louisiana, Port of Little Rock from Arkansas, and Port of Mem-
phis, Pemiscot County Port, and New Madrid County Port from Tennessee. All

the ports are directly connected with each other via the Mississippi River.

Supply Data: Four commodities, namely, rice, corn, woodchips, and fertilizer
are selected to transport them from their supply sites to demand locations via the
inland waterway transportation network. Figure 4.6 shows the supply distribu-
tion (in 1,000 tons) of these four commodities in the test region. Only the suppliers
that are located within a radius of 60 miles from the ports are considered for the

study. Among the four commodities, rice and corn are highly seasonal in nature
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County Border

Figure 2.3

Existing inland waterway port locations along the Mississippi River
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and are not available throughout the year. Rice is available only between August
and October of each year whereas corn is harvested only between mid-July and
early December of each year [133]. Similarly, it is observed that woodchips remain
available year-round except three months during the winter (December to Febru-
ary) [133]. However, availability of fertilizer is uniform throughout the year. The
test region produces 6.3 and 113.8 million tons of rice and corn per year from 42
and 59 different counties, respectively [135]. On the other hand, the region pro-
duces 8.3 and 0.4 million tons of woodchips and fertilizer per year from 31 and 22

different counties, respectively [136, 137].

Demand Data: This study considers a total of 43 industries in Mississippi as de-
mand points for the commodities. These facilities are located nearby the inland
waterway ports. The annual demand for the commodities are set to be 3.8, 68.3,
8.3, and 0.37 million tons of rice, corn, woodchips, and fertilizer, respectively
[135, 137]. Figure 2.5 shows the location and distribution of demand points for

all the four commodities in Mississippi.

Transportation Costs: This study considers two modes of transportation to trans-
port commodities from their sources to destinations: trucks and barges. Trans-
portation distances between supply sites i € Z and origin ports j € J, and des-
tination ports k € K to markets ¢ € G are short. Therefore, trucks are preferred

to carry the commodities between them. A semi truck having 25 tons of load
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test region (in 1,000 tons)
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capacity can be used to serve this purpose. The fixed cost (e.g., loading and un-
loading cost) and variable cost (e.g., fuel cost) for such a truck can be $5/ton and
$1.20/mile/truckload, respectively [36]. On the other hand, waterway transporta-
tion is primarily conducted between origin ports j € J and destination ports
k € K by the association of barges and towboats. Using a towboat that can carry
a maximum of eight barges, incurs a fixed loading and unloading cost of $244.38
[138]. Considering the waterway depth in the Mississippi River, towboat capacity
is restricted to a maximum of 15 barges having a maximum capacity of 1,500 tons
each [138]. Barge rate is set as $0.017/mile/ton that is adopted from a study of

Gonzales et al. [48].

Water-level Fluctuations: Water level fluctuation is one of the notable issues that
significantly impacts the Inland waterway transportation system. Different wa-
terbodies all over the world face this unavoidable phenomenon in different time
period of the year such as Yangtze River at China [94], Rhine River at Europe [94],
Tagliamento River at Europe [131] and many others. The Mississippi River also
experiences water level fluctuations in different locations and time periods of a
year that significantly impacts the inland waterway port operations. For instance,
lower Mississippi River has better flow compared to the upper Mississippi River;
therefore, the load carrying capacity of this segment of river is better and more
reliable compared to the upper Mississippi River. On the other hand, it is evident

from the historical records that the water level of this portion of river experiences

63

www.manaraa.com



significant variations over the year that impacts the barge traffic flowing through
this waterway. This fluctuation often becomes significant even in different weeks
of the same month. Figure 5.5 provides an example demonstrating the water level
fluctuations between Port of Rosedale and Port of Greenville from July, 2016 to
June, 2017 [139]. Each data point in this figure shows the weekly water stage® vari-
ation (e.g., minimum, maximum, and average water level) as reported by the US
Army Corps of Engineers [139]. It is observed that the water level drops primarily
between the middle of August and end of December of a calender year where the
drop becomes maximum during the first three weeks of October (week 14-16 in
Figure 5.5). Note that, other than this time period, the water stage generally re-
mains above the desired level of 14.2 feet, except in May when the level reaches to

42 feet, which is greater than the flood level (37 feet) [139].

2.5.2.2 Experimental Results

Impact of water level fluctuation on towboat and barge selection:

Our first set of experiments examine the impact of water level fluctuation on
overall system performance. To run these experiments, we create three different
scenarios which are summarized in Table 2.7. These scenarios are created based on
our observations in Figure 5.5. Note that the difference between scenario 3 with 2
is to consider water fluctuation up to flooding level which typically occurs during

the month of May in the test region [132]. Figure 2.7 illustrates how the selection of

5A popular measure for water level in a river stream with respect to a reference height
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Example demonstrating water level fluctuations between Port of Rosedale and

Port of Greenville from July, 2016 to June, 2017 [139]

/YL . ) are impacted under three

barges (Yi ;) and barge to towboat ratio® (Yi snik

bsj bsjt

different scenarios as described in Table 2.7. Clearly, Y?

2 1
mbsjt @S well as Ymbsjt/Y

snjkt

decisions are significantly impacted if water level fluctuations are taken into con-
sideration. It is observed that the test region is required to use an additional 81.5%

and 39.7% of Y2, .. and Y ., respectively, if the water level fluctuation is appro-

bsjt snjkt’

priately measured and taken into consideration in model [IMP]. These decisions

/YL . by approximately 16.1% since on average more barges are

: 2
increase Ym snjkt

bsjt
now required to connect with a single towboat to satisfy the market demand for

the commodities. Note that both Yfibsjt and Y2, ./ Yslnjkt are highly sensitive to

bsjt

®The ratio indicates on average how many barges are connected with a towboat in a single trip
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peak supply seasons (e.g., July-November) and has little to no impact during the
off supply/demand seasons (e.g., February-June) (shown in Figure 2.7). Finally,
we observe that, if flood level is taken into consideration (scenario 3), then model
[IMP] forces no inland waterway transportation for the month of May, which re-
sults in a 6.9% increase in Uy,¢ and 7.1% increase in overall system cost for the test

region.

Table 2.7

Description of scenarios

Scenario Description

1 Water level fluctuation is ignored
2 Water level fluctuation is considered but flooding level is ignored
3 Water level fluctuation is considered with flooding level

Impact of supply (¢,,;;) changes on overall system performance:

This set of experiments analyze the impact of supply changes on overall system
performance. To run the experiments, we change the base supply (¢;) by £15%
and £+30% and observe its impact on towboat (Y}, i) and barge selection (Y2, i)
unsatisfied demand (Uygt), and storage level (H,,j;) of the commodities. Figure 2.8
illustrates the impact of supply changes on overall system performance. Note that

in Figure 2.8, t = 1 represents a representative week of month July. Further, to run
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the experiments, we kept the demand dy¢ fixed under all scenarios. Experimental

and Y2

results indicate that if ¢,,;; changes by +30%, selection of Y mibsjt

snjit changes

by 14.1%/-15.8% and 12%/-49%, respectively. Observe that the reduction in ¢,,;
significantly increases the unsatisfied demand quantity Uyet, primarily in the time
period between August (t = 2) to November (t = 5) of the planning horizon.
Note that this is the peak supply and demand period of the year when all four
commodities are available, including rice and corn. This, in turn, also impacts the
inventory management decisions H,j; of the ports. For instance, if ¢,,;; changes
by +£30%, Hyj; is changed by 50%/-78% posing some serious challenges for the
inland port managers to manage inventories during those peak supply seasons.

Impact of demand (d,,4) changes on overall system performance:

This set of experiments provide a similar analysis as in Section 2.5.2.2, but
changing the demand by +15% and +30% from the base demand d;¢; in order
to observe their impacts on overall system performance. Figure 2.9 illustrates the
impact of changes in dy;¢+ on towboat (Ysln jkt) and barge selection (Yébs ]-t), unsat-

isfied demand (Uy,gt), and storage level (H,,j;) of the commodities. Experimen-

tal results indicate that the selection of Y1

snjkt and Y2, . is highly sensitive to the

bsjt
changes in dy;,¢r on the overall planning horizon, but in particular to months from

July to November, when the supply and demand peaks for the commodities. For

instance, if dy¢r changes by +30%, selection of 1% ,and Yi

snjk ; changes by 14.3%/-

bsj
52.1% and 25.4%/-32.2%, respectively. We further observe the changes in d;¢; on

Ungt and Hmjt decisions. For instance, Hm]-t utilization is only realized between
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months from July to September in a planning horizon when the supply season
peaks. However, H,,j; drops by 34% and 62.8% when dy¢t is increased by 15% and
30%, respectively. This is understandable since the model finds it economical to
transport more commodities to satisfy market demands rather than storing them
in the inventories.

Impact of Barge availability on system performance:

Barges are the key elements of the inland waterway transportation. Depend-
ing on the products handled, three types of barges are commonly used along
the Mississippi River: (i) covered barges to carry grains and agricultural prod-
ucts (e.g., corn), (ii) tank barges to carry liquid products (e.g., petroleum), and
(iii) open barges to carry dry products (e.g., coal) [134]. According to the Amer-
ican Waterways Operators, more than 22% of the existing barges are expected
to become obsolete by the end of 2018, primarily due to exceeding their useful
service life [134]. This not only will significantly impact the barge availabilities
apjt, but also will raise concerns for waterway transportation like the Mississippi
River that contributes approximately 80% of the country’s overall inland water-
way transportation [128]. Note that, with fewer barges, the overall inland water-
way transportation will be largely impacted, especially during the peak demand
season (September to November) in the Southeast region of the United States.
Therefore, we conduct sensitivity analysis by dropping the overall barge availabil-
ity 4y = Y e B,jeT Mbjt ;Vt € T by 30%, 45%, and 60%, respectively from the base
case scenario and analyzing its impact on the overall system performance. Note
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that towboats have better rebuild and repair rates [128]; hence, their availabilities
(asjr) remain fixed for this set of experiments. Results in Figure 2.10 clearly indi-
cate that a; significantly impacts the number of barges handled by the Mississippi
River (|Y51bS it ) and it’s consequence to overall demand satisfaction (Uygs) during
the high production seasons for this region. For instance, a 30%/60% drop in a;

decreases |Y2, .| and Uugt by 13%/34.2% and 11%/29.3%, respectively and the

bsjt
significance is more prominent for the time period between September to Novem-
ber, when both the supply and demand for all four commodities are high. We end

of our discussion by highlighting that 4; has marginal to no impact on the off-peak

production seasons as evidenced from the results in Figure 2.10.

2.6 Conclusion

This paper proposes a mathematical model formulation which minimizes the
short-term operational decisions (e.g., trip-wise towboat and barge assignment)
and mid-term supply chain decisions (e..g., inventory management, transporta-
tion decisions) for an inland waterway transportation network in such a way that
the overall supply chain cost can be minimized. We present an enhanced Benders
decomposition algorithm to efficiently solve our proposed optimization model in
a timely manner. We then use few Southeast US States as a test bed to visualize
and validate the modeling results. A number of managerial insights are drawn,
such as how the water level fluctuation, supply and demand variation, and barge

availability impact the inland waterway transportation.
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To summarize, the major contributions of this study include: (i) proposing a
multi-commodity, multi-time period mathematical model that optimizes inland
waterway port operations and minimizes the overall system cost from a supply
chain viewpoint; (ii) testing an efficient variant of the Benders decomposition
algorithm (more specifically, local branching procedure with pareto-optimal cut,
knapsack, and valid inequalities) to solve realistic-size network design problems;
and (iii) drawing managerial insights from a real-life case study. We believe the
proposed methodologies and managerial insights obtained from this study will
help decision makers to design an efficient supply chain including inland water-
way ports.

This research can be extended in several directions. First, it would be interest-
ing to see how the stochasticity associated with commodity supply and demand
impact the inland waterway transportation. The model can also be extended to
incorporate barge and tow routing, scheduling, and re-positioning issues. Next,
our study assumes that the inland waterway ports will never be impacted by any
disruption. However, in practice both natural (e.g., hurricane, tornado) or human-
induced (e.g., cyber attack) disruption can significantly impact the port operations.
These issues will be examined in future studies. Further, we used an enhanced
variant of the Benders decomposition algorithm that includes different cut gener-
ation techniques and heuristics such as valid inequalities, knapsack inequalities,
pareto-optimal cuts, input ordering, and local branching techniques. However,

further enhancement of Benders decomposition algorithm is possible by applying
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MP size management techniques, generating alternative formulations, using ad-
ditional heuristics, adding covering cuts, or using few Benders-type heuristics as
proposed by Rahmaniani et al. [111]. Our future studies will examine the appli-
cability and performance of these techniques to solve different inland waterway

transportation based logistic network design problems.
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CHAPTER 3
A PARALLELIZED HYBRID DECOMPOSITION ALGORITHM TO SOLVE A
CONGESTED INLAND WATERWAY PORT MANAGEMENT PROBLEM

UNDER UNCERTAINTY

3.1 Introduction

Inland waterway ports are indispensable components of the nation’s water-
way transportation system which greatly contributes to the overall economy of the
nation. In the United States, these ports contribute approximately 15 billion dol-
lars to the nation’s GDP (Gross Domestic Product) along with creating more than
250,000 job opportunities (both direct and indirect) annually [89]. Additionally,
these ports play a major role in the rural industrial and agricultural development
for a nation [84]. Despite of their great potentiality, this segment of transporta-
tion system is frequently impacted by many factors which hurts it’s productiv-
ity, including but not limited to congestion, aging infrastructure, delays caused
by scheduled and unscheduled closures of locks (primarily due to maintenance
activities), and many others [140]. According to the American Society of Civil En-
gineers (ASCE), in 2010, the United States encountered a total of $33 billions of
additional annual expenditure primarily due to the delays governed by conges-

tion and other waterway specific issues [8]. This cost will continue to increase
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over time and is projected to reach nearly $49 billions by 2020 [8]. Therefore, it
now becomes imperative to alleviate congestion from the inland waterway ports,
primarily via optimal resource utilization/allocation and efficient transportation
planning. Doing such will not only attract potential investors to utilize inland
waterway transportation over freight transportation but also continue to support
retaining the national GDP and employment in this sector while reducing the un-
expected monetary investment due to congestion and other port related issues.
Though seemingly sound similar, inland waterway ports hold some unique
properties that differ them significantly from the seaports. For instance, these ports
generally handle barge traffic drafting upto 9 feet only, located primarily near
smaller bodies of water (e.g., rivers and canals), usually land intensive, and/or
handle smaller counts of larger users and a large number of smaller users [84].
Additionally, the water level between the channels of two connecting inland wa-
terway ports fluctuates heavily in different time periods of the year [139, 94, 90].
Depending on the severity of this fluctuation, these ports, including the waterway
itself, often experience disruptions, such as drought and flood that may tremen-
dously impact or even cease the port operations for an extended period of time.
Another prevalent feature that distinguishes inland waterway ports over seaports
is that these ports commute heavy volume of perishable agricultural products
which are highly seasonal in nature. The seasonality in agricultural products
coupled with time varying waterway conditions and the availability of locks and

dams between two source destination ports may excessively delay the port op-
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erations which directly impacts the operational planning of the ports under con-
sideration. With all these outstanding challenges, it is quite certain that the opti-
mization models available in the literature for the maritime transportation may no
longer be directly applicable for the inland waterway ports. Hence, to ensure long
term sustainment of the inland waterway ports, there is a critical need to develop
sophisticated optimization models that best capture the unique characteristics of
this cost efficient, reliable, and environmentally friendly transportation sector.

A major stream of ongoing research develop optimization models to solve di-
versified seaport-related problems, such as ship routing and scheduling [29, 68],
inventory routing [5], berth allocation and scheduling [27, 32, 141], empty con-
tainer re-positioning [43], sailing speed optimization [73, 141], bunker consump-
tion [145], emission consideration [141], disruption [43, 126], container routing
[146], port delays [148], and many others. Apart from adopting mathematical
approaches, few researchers develop simulation models to address similar prob-
lems (e.g., [118, 125, 121, 44]). Even though deep penetration to seaport research
is observed, inland waterway ports did not receive much attention from the re-
search community. A few considerations can be noticed for deep draft inland ports
which are capable of handling container cargos and ships; however, almost no
research has been conducted to date that puts specific considerations to model

shallow draft inland ports'. These ports primarily handle shallow draft vessels (e.g.,

IThe ports that are unable to handle barges/vessels drafting more than 9 feet are known as
shallow draft inland ports. For the ones that can handle barges/vessels drafting more than 9 feet, are
known as deep draft inland ports.
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barge, towboats). Considering their outstanding contributions in the overall trans-
portation system and economy, better understanding of shallow draft inland wa-
terway ports is imperative to successfully design and manage a sound and efficient
supply chain network.

To address this need, this study proposes a model which magnifies how dif-
ferent shallow draft inland waterway port-related internal (e.g., barge/towboat
assignments, inventory decisions, port delays) and external (e.g., waterlevel fluc-
tuations) factors/decisions impact the overall supply chain system performance.
More specifically, we propose a capacitated, multi-commodity, multi-period, two-
stage stochastic mixed-integer nonlinear programming model which jointly opti-
mizes trip-wise towboat and barge assignment decisions along with different sup-
ply chain decisions (e.g., inventory management, transportation decisions) under
a congested and stochastic environment and in such a way that the overall supply
chain cost can be minimized. The proposed model realistically captures a number
of factors that appropriately characterize the operations of a shallow draft inland
waterway port, such as towboat and barge availability, weight and volumetric
capacity restriction of barges, dredging issues, commodity mixture restrictions,
storage restrictions at ports, trip restrictions between origin-destination ports, con-
gestion issues, delays in locks and dams, and many others. We realized that our
proposed mathematical model is an extension of the fixed charged, uncapacitated
network flow problem which is already known to be an NP-hard problem [74].

Therefore, we develop a highly customized parallelized hybrid decomposition al-
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gorithm, combining Constraint Generation algorithm, Sample Average Approxi-
mation, and an enhanced variant of the L-shaped algorithm, to effectively solve
the large instances of our proposed optimization model in a reasonable amount of
time.

Apart from proposing the mathematical model and solution approaches, an-
other important contribution of this study is the application of this model to a real
world case study. We use the inland waterway transportation network along the
Mississippi river as a testing ground to visualize and validate the modeling re-
sults. The outcome of this study provides a number of managerial insights, such
as the impact of water level fluctuations on towboat and barge selection, cost due
to delay in transportation, and commodity supply fluctuations on overall system
performance, which can effectively aid decision makers to design a cost-efficient
shallow draft inland waterway transportation network.

This paper is organized as follows. Section 3.2 reviews the related works. Sec-
tion 3.3 describes the problem statement and introduces the proposed mathemat-
ical model formulation. Section 3.4 introduces different algorithms to solve our
proposed mathematical model including the parallelized hybrid nested decompo-
sition algorithms. Section 3.5 presents a real life case study, draw several manage-
rial insights from the case study, and summarizes the computational performances
of the proposed algorithms. Finally, we conclude our study and discuss several fu-

ture research avenues in Section 3.6.
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3.2 Literature Review

Different realistic aspects of deep draft inland waterway ports have attracted the
research community for many years, including specific problems in optimizing
barge and towboat routing and repositioning, berth allocation, port disruption,
delays in locks and dams, and a few others. This section provides a comprehensive
literature overview on these specific research problems.

Berth allocation problem is a common problem that typically experiences by
both seaports and inland waterway ports. To date, few researchers have attempted
to solve this problem for the deep draft inland waterway ports. For instance, Gru-
bivsic et al. [50] solve a berth layout design problem to minimize the overall vessel
waiting time. Depuy et al. [30] consider several factors, such as fleet location ca-
pacity, total volume of barges, and average handling time, to optimally allocate
barge volume to different fleet locations. Arango et al. [11] adopt a combined
simulation-optimization approach to solve a berth allocation problem. Guan and
Cheung [51] propose two berth allocation model formulations while adopting a
tree search solution procedure to solve the problems in realistic size test instances.

In addition to this research challenge, another stream of research study how
the performances of locks and dams impact the deep draft inland waterway trans-
portation network. For instance, Ting and Schonfeld [130] utilize a simulation-
optimization framework to decide how much capacity increment is required for
the locks so that the costs associated with tow delays can be minimized. Wang

and Schonfeld [147] also adopt a combined simulation-optimization approach to
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schedule the investment decisions for lock reconstruction and rehabilitation. Ting
and Schonfeld [129] introduce an integrated tow control algorithm in order to re-
duce the delays between a series of locks. Most recently, Tan et al. [127] propose
an optimization model that jointly optimizes ship schedule and sailing speed for
the deep draft inland shipping services under uncertain dam transit time.

Another stream of research focus on optimizing the barge routing and empty
container repositioning problem for the deep draft inland waterway ports. One
such study is conducted by Braekers et al. [20] where the authors optimize barge
routing and empty container repositioning between a sea port and few hinterland
ports. The extension of this work [19] includes vessel capacity and round trip ser-
vice frequency to the barge routing and empty container repositioning problem.
Marass [76] proposes a mixed-integer linear programming (MILP) model to opti-
mize the transport routes of chartered container ships or tows for an inland wa-
terway port. Another MILP model is proposed by Alfandari et al. [6] to provide
an optimal planning associated with liner service for a barge container shipping
company. Davidovic et al. [28] study a barge container ship routing problem and
propose a guided local search technique to solve this problem. Most recently, An
et al. [9] formulate a MINLP model to solve an empty container repositioning
shipping network design problem.

Realizing the need that a port may fail either due to natural (e.g., hurricane,
tornado) or human-induced (e.g., cyber-attack) disaster, few studies focus on iden-

tifying the resiliency of a deep draft inland waterway port. For instance, Baroud et
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al. [13] convert different stochastic resilience-based component importance mea-
sures into an optimization framework to determine the important waterway links
and the precedence of link recovery in case of a disaster. Oztanriseven and Nacht-
man [102] develop a simulation-based approach to estimate the potential eco-
nomic impacts of inland waterways disruption response. The authors utilize McClellan-
Kerr Arkansas River navigation system as a testbed to visualize and validate the
simulation results. MacKenzie et al. [72] analyze the economic impact of any
sudden inland port closure by combining a simulation and a multi-regional input-
output model. Pant et al. [103] propose a dynamic, multi-regional interdepen-
dency model to assess the effect of disruptions on the waterway networks, includ-
ing both ports and waterway links. Folga et al. [42] propose a system level model
to analyze the interdependency of failure followed by a disaster. Hosseini and
Barker [59] propose a Bayesian network to model the infrastructure resilience of
an inland waterway port. Other studies related to inland waterway ports include
the consideration of port-specific economic analysis [4, 87, 151, 67], optimal dredg-
ing scheduling and investment decisions [86, 113, 18], the efficiency of inland wa-
terway container terminals [152], tug scheduling between seaport to inland ports
[39, 45, 157], and carbon emission [155, 71, 25].

Different from the studies discussed above, our study captures different re-
alistic shallow draft inland waterway port-related features (e.g., waterlevel fluc-
tuation, delay in locks and dams, port congestion, towboat and barge assign-

ment decisions, barge availability and maintenance) and magnifies their impact
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on the overall supply chain system performance. Note that till now a number
of existing studies in the literature consider inland waterway ports as a medium
of transportation while designing a supply chain network, examples include but
not limited to biomass supply chain (e.g., [109, 79, 80]), coal supply chain (e.g.,
[35, 47, 62]), grain supply chain (e.g., [88, 10, 31]), and many other application ar-
eas. However, very few studies have captured the true characteristics of the inland
waterway transportation (e.g., water level fluctuation, barge /towboat assignment
decisions, barge availability and maintenance) while solving a network designing
problem. Another important feature of our model is the consideration of con-
gestion caused by the seasonality of the supplies (primarily, agricultural products
as handled most by the inland waterway ports), waterlevel fluctuation, unavail-
ability of resources (primarily, caused by barge availability and frequent main-
tenance needs), delay in locks and dams, limited service capacity in the ports,
and many others. Though a rich stream of research available in the literature
to efficiently manage congestion in diversified fields, including traffic networks
[149, 101], telecommunication networks [143], service networks [3], and biomass
supply chain networks [78, 106], and more specific to maritime ports [156, 38], wa-
terways [154], and river ports [123], none of the studies manage congestion for a
shallow draft inland waterway port and its possible impact to the overall supply

chain system performance.
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3.3 Problem Description and Model Formulation

This section presents a two-stage stochastic programming model formulation
for the design and management of an shallow draft inland waterway transportation-
based logistics network while stochastic nature of commodity supply and water-
level fluctuations are taken into consideration. Further, the model attempts to
minimize the sudden congestion that may possibly arise due to water-level and
commodity supply fluctuations. The main objective of our model is to jointly opti-
mize tripwise towboat and barge assignment decisions and different supply chain
decisions (e.g., inventory, transportation decisions) in such a way that the overall
system cost can be minimized. Figure 3.1 illustrates a simplified logistics network
consisting of three supply sites, two origin and three destination ports, and four
markets. For simplicity in the remaining sections of this paper, we shall refer shal-

low draft inland ports as inland waterway ports.

Consider a logistics network consisting of a set of supply sites Z = {1, 2,3, ..., I},
set of origin ports J = {1,2,3,..., ]}, set of destination ports £ = {1,2,3,..,K},
and a set of markets G = {1,2,3,...,G}. Let M = {1, 2,3, ..., M} be the set of com-
modities that need to be transported along this logistics network over a predeter-
mined set of time periods 7 = {1,2,3, ..., T}. Note that to handle the appropriate
interconnections between the source and destination pairs, we introduce a num-
ber of subsets (e.g., Ti, Lo, Tiv T IC]-, K¢, Gk, and G;) in our model. For instance,
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Figure 3.1

Illustration of an inland waterway transportation network

set Z; represents the subset of supply sites connected to port j € J. We use the
similar convention to define other subsets. To account for different scenarios of
water-level and commodity supply fluctuations, we introduce scenario set w € ()
where p,, defines probability of a given realization and ) ,c pw = 1.

Each supply site i € Z produces a stochastic amount of commodity ¢, of
type m € M at time period t € 7 under scenario w € (). Suppliers have the
option to send the commodities directly from a supply site i € Z or via an inland
waterway transportation network, primarily through origin and destination ports
J and K, to amarket ¢ € G. The transportation distance between a supplieri € 7

and an origin port j € J is usually short. Therefore, truck is preferred to carry
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commodities between these arcs (i,j) € (Z, J) by incurring an unit transportation
cost of ¢;jr. Each shipment from the supply sites are consolidated in any origin
port j € J before being delivered to a destination port k € K. We assume that a set
of towboats S = {1,2,3,...,S} and barges B = {1,2,3, ..., B} are available to carry
commodities from any pair (j,k) € (J,K) of the origin-destination ports. Note
that we sort set S based on the capabilities of the towboats (e.g., towboat 1 in set
S is the least powerful towboat while S to represent the most powerful towboat).
Based on the capabilities, we denote 65 and J, to be the maximum and minimum
number of barges that can be carried out by a towboat s € S in a single trip. Let
and 7,,,; be the fixed cost associated with using a towboat s € S and loading and
unloading commodity m € M inbarge b € B at time period t € 7. Eachbarge b €
B is restricted to a weight and volume carrying capacity of w;, and v}, respectively.
We further denote ¢,k to be the unit cost of transporting commodity m € M
using barge b € B connected with a towboat s € S along arc (j, k) € (J,K)
at time period t € 7. Both the barges and towboats need to undergo periodic
maintenance. This is captured via introducing binary availability parameters a;;;
and 4, respectively. Finally, we define ¢,k to be the unit cost of transporting
commodity m € M using barge b € B connected with a towboat s € S along arc
(j,k) € (J,K) at time period t € T.

Each port j € J UK, is restricted to a maximum of commodity processing ca-
pacity of ¢j; and storage capacity of E]-. Let 1, be the unit inventory holding cost

for commodity m € M in portj € J UK at time period t € 7. We further de-
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fine a;, to capture the deterioration rate of carrying commodity m € M between
two consecutive time periods. We also introduce a set N}‘k = {1,2,3,..,, njk} to
capture the possible trips that can be made by a towboat between each origin-
destination port (j, k) € (J,K). Note that due to dredging effect, the weight car-
rying capacity of a barge w; as well as the possible number of trips between each
origin-destination port, denoted by parameter Tj, at time period ¢ € 7 may vary.
We now first define three parameters wj,, Wkt,, and Wik, to denote the maximum
weight carrying capacity at port j € J U K and wjy,, the allowable weight that can
be carried between the channel (j, k) € (J,K) at time period t € T under scenario
w € Q). Itis observed that the depth of navigation channel near ports or the water-
body that connects a source-destination port may vary in different time period of
the year depending upon the amount of sediment, silt, or mud accumulated in the
waterbed. When this accumulation is high in any portion of the waterway (e.g.,
near ports or between two connecting ports), it raises the height of the waterbed
and results a decrease in the water depth. Unfortunately, when the reduction of
this water level becomes too intense, it seriously impacts the transportation of
shallow draft water vessels through the channel. Resultantly, the barges are now
restricted to carry commodities below to their designed weight carrying capacity
of wy. In practice, the maximum effective weight that a barge b € B can carry under
this restriction would be the minimum weight between the weight capacity near
origin and destination ports, namely, wj, and wy,, and the channel between
each origin-destination ports (j, k) € (J,K), namely, wjr,, i-e., min{Wik,, Wy}
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where Wiy, := Min{Wijt,, Wik, Wi ;- Further, due to the unpredictability to ac-
curately estimate this restriction, we consider Wy, to be a stochastic parameter in
our proposed model formulation. Finally, in addition to carrying the commodi-
ties through the inland waterway transportation, we also assume that the demand
for commodities at the markets, denoted by dy,¢, can be satisfied either via direct
shipments from the supplier sites (primarily via trucks) or via an external source
by paying a unit penalty cost of 71,4t We now summarize the following notations
for our proposed mathematical model formulation.

Sets:

o TI:setof supply sites, i € Z

J: set of origin ports, j € J

K: set of destination ports, k € K

G: set of markets, g € G

o M: set of commodities, m € M

e S: set of towboats,s € S

e [3: set of barges, b € B

o Nj: set of trips along arc (j, k) € (J,K), n € Ny

T set of time periods, t € T

Z;: set of supply sites connected to port j, Vj € J

T,: set of supply sites connected to market g, Vg € G

Ji: set of origin ports connected to supply sitei, Vi € Z

Jy: set of origin ports connected to destination port k, Vk € K

Kj: set of destination ports connected to origin port j, Vj € J

Ky: set of destination ports connected to market g, Vg € G

Gy: set of markets connected to destination port k, Vk € K
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e §;: set of markets connected to destination port i, Vi € Z

e (): set of possible scenarios w, Vw € ()

Parameters:

® Qnitw: amount of product of type m € M available in supply site i € Z at
time period t € T under scenario w € ()

o | fixed cost of using towboat s € S at time period t € T

o 1mpt: fixed cost for loading and unloading commodity m € M inbargeb € B
at time period t € T

® Cpigr: unit cost of transporting commodity m € M along arc (i,g) € (Z,G)
at time period t € T

® Cyefy: UNit cost of transporting commodity m € M alongarc (e, f) € (ZUK, T UG)
at time period t € T

® Cypsjke: unit cost of transporting commodity m € M using barge b € B of
towboat s € S along arc (j, k) € (J,K) at time period t € T

. c;?t / ciy: congestion costinportj € J UK attimet € T
) Ej: commodity storage capacity at portj € J UK

e dygr: demand for commodity of type m € M in market ¢ € G at time period
teT

o ay;: deterioration rate of commodity m € M
® asj;, ayjy: binary availability of towboat and barge
e 5, 6;; maximum/minimum number of barges to carry by towboat s € S

® Wik, the minimum of {wjt, Wiktw, Wit } Where wjy, and wyy,, indicate the
maximum weight carrying capacity at port j € J UK and wjy,, the allow-
able weight that can be carried between the channel (j, k) € (J,K) at time
period ¢t € T under scenario w € Q. The last weight (wj,) depends on
the depth of the waterway and should not exceed the minimal water-level
between the origin-destination ports

o oy density of commodity m € M

e v;: volume capacity of barge b € B
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e wy: weight capacity of abarge b € B

® 7TTmgt: unit penalty cost of not satisfying demand for commodity m € M in
market ¢ € G at time period t € T

® Ji,j: unit inventory holding cost for commodity m € M in portj € JUK
at time period t € T

e 0j;: total number of barges available in port j € J at time period t € T

e Tj;: maximum number of trips that can be made along arc (j, k) € (J,K) at
time period ¢

® Cjt,Cxp: commodity processing capacity of port j € J UK at time period
teT

e 1}, t,: average loading and unloading time of a barge

e A: average delay in locks

e Ij: number of locks between origin port j € J and destination port k € K
e dj: distance between origin port j € J and destination port k € K

e Uy average speed of towboat s € S at time period t € T

e tj: allowable transport time limit between each origin port j € J to destina-
tion portk € K

p.w: probability of scenario w € ()

First Stage Decision Variables:

o Yo,k 1if a towboat s € S is used in arc (j,k) € (J,K) for trip n € N at
time period t € T; 0 otherwise

® Yypsjr: 1if commodity m € M is carried on barge b € B of towboats € §
from port j € J at time period t € T; 0 otherwise

Second Stage Decision Variables:

® Xiigtwo: amount of commodities of type m € M transported along arc (i, g) €
(ZUG) at time period t € T under scenario w € ()

® Xyefiw: amount of commodities of type m € M transported along arc (e, f) €
(ZUK, T UG) at time period t € T under scenario w € Q)
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® Xyupsnjktw: amount of commodities of type m € M transported using barge
b € B of towboat s € S of trip n € N along arc (j,k) € (J,K) at time
period t € T under scenario w € ()

® Hyjtw: amount of commodities of type m € M stored in port j € J UK at
time period t € 7 under scenario w € ()

o Upgiw: amount of commodities of type m € M shortage in market ¢ € G at
time period t € 7 under scenario w € ()

We now introduce the following first and second-stage decision variables for
our proposed two-stage stochastic programming model formulation. The first-
stage decision variables Y = anjke[Vs € S,n € /\/jk, je€ JkeKyteT}and
Y2 = {Ymbsjtwm e M,be B,seS,je J,t €T} determine which towboat to
use between any origin-destination pair in a given time period and which barge to

use for carrying any particular product at any given origin port, respectively, i.e.,

1 if a towboat s is used in arc (j, k) € (J,K) for trip n at time period ¢

stjkt =
0 otherwise;
)
1 if barge b connected to towboat s is used to carry commodity m
Yinbsjt = at port j in time period ¢
0 otherwise;

\

The second-stage decision variables X! := {Xomigtw|Vm € M, (i,g) € (TUG),t €
T,w € Q} determine the amount of commodities of type m € M transported
along arc (i,g) € (ZUJG) at time period t € 7 under scenario w € Q; X* :=
{Xeftw|Vm € M, (e, f) € (ZUK,TUG),t € T,w € Q} to denote the amount

of commodities of type m € M transported along arc (¢, f) € (ZUK,JUG) at
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time period t € T under scenario w € Q; X° := { Xnbsnjkto|Vm € M, b € B,s €
S,n € N, (jk) € (J,K),t € T,w € Q} to denote the amount of commodi-
ties of type m € M transported using barge b € B of towboat s € S of trip
n € Nj along arc (j,k) € (J,K) at time period t € T under scenario w € ();
H := {Hyjto|Vm € M,j € TUK,t € T,w € Q} to denote the amount of com-
modities of type m € M stored in port j € J UK at time period t € T under
scenariow € (); and U := {Umgtw} to denote the amount of commodities of type
m € M shortage in market ¢ € G at time period t € 7 under scenario w € Q). For
notation simplicity, we define Yas Y := Y'UY?and Xas X := X' UX?UX®.
Inland waterway ports handle a number of agricultural products (e.g., corn,
rice, woodchips) which are highly seasonal in nature. For instance, rice is avail-
able only between August to October in a given calendar year. Likewise, corn is
harvested between mid-July to late November of each year [133]. Such season-
ality coupled with stochastic availability of the commodities can create a unique
challenge for port managers from the managing and handling viewpoint. The
most predominant impact would be the waiting time for the trucks to be ser-
viced in a given port during peak harvesting seasons. This results congestion in
the ports which eventually impairs the shipment delivery time and hence increase
the overall transportation cost. To realistically capture this effect, we borrow the
congestion function proposed by Elhedhli and Wu [34] to add in the objective func-
tion of our proposed model formulation and to evaluate the performance of the

inland waterway transportation network under this critical consideration. Es-
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sentially, it can be stated that the average waiting time for the commodities in-
creases as the total commodity flow approaches very close to the capacities (cjt, Cy)

of a given port j € J|JK. Mathematically, this term can be represented as:
( LimeM LbeB LiseS LneNy Lkek Xmbsnjktw
Cit — Lme M LbeB LseS Lne Ny Likek Xmbsnjktw

) for port j € J at time period
t € T and under scenario w € (). Note that we represent ¢j; = Cj; + A where
Cjt is the actual processing capacity for port j € J in time t € T and A is a small
number. Clearly, if the total commodity flow Xjpsujkt exceeds ¢j; i.e., approach-
ing very close to ¢j;, ratio of the equation will increase exponentially and thus will
realistically address the impact of congestion to a given port. Likewise, conges-

tion function for port k € K at time t € 7 under scenario w € () can be repre-

ZmeM deg kagtw

Ckt — ZmeM deg kagtw
port j € J UK at time period t € 7. Therefore, for each t € 7 and w € (), the

sented as: ( > Let c;.’t and c}, be the congestion cost in

overall system-wide congestion cost can be represented as follows:

y ( LimeM LbeB Lse s Lne Ny Lkek Xmbsnjktw )
Cir| =
jeJ ! Cjt — ZmEM ZbEB ZseS Zne]\/}k ZkelC mesn]'ktw

0 YmeM deg kagtw
+ Z Che\ = X
kex Ckt — LmeM deg mkgtw

We note that in addition to capturing congestion in the ports during peak sup-
ply seasons, towboats may also experience congestion in the locks between two
connecting ports. However, to simplify the modeling process, in this study we
ignore the congestion caused by the locks between two connecting ports. Mean-

while, total travel time for a towboat between each source-destination pair is ap-
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proximated and a feasible time limit is provided. Let A, [ ks and d ik be the average
delay in locks, the number of locks between each origin-destination port, and the
traveling distance between each pair of ports (j, k) € (J,K). We further denote
Ot to be the average speed of towboat s € S at time period t € 7 and t; and ¢, to
be the average loading and unloading time for a barge. We can then approximate
the total travel time for a towboat s € S in trip n € N between each origin desti-
nation port (j, k) € (J,K) attime t € T as: { Ymem Lpen (b + tu) Yinpsjt + (Z—fs'; +
Al]-k)st]-kt }, and we assume that this travel time should be restricted by a feasible
time limit £.

We are now ready to introduce the objective function of our proposed two-
stage stochastic programming mathematical formulation, referred to as [IPMI].
The model introduces two uncertain parameters, supply availability (¢t,), and
allowable weight limit in waterway connecting ports (Wjk,). To capture the in-
teraction between the stochastic parameters we define  as the vector of these un-
certain parameters, i.e., { = (¢, w), and (¢ is a given realization of the uncertain
parameters, (“ € (. The decisions about towboat and barge selection (Y) are made
prior to a realization of any stochastic event. However, after the stochasticity is re-

vealed, the second-stage decisions such as the transportation (X), storage (H), and
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shortage (U) decisions are made. The proposed mathematical model is now given

below.

[IPM] Minémize Z Z Z( Z Z 1/Jststjkt + Z Z ﬂmthmbsjt) 3.1)

SES JET teT “\neNj kek; meM beB

+ Z pr(Y/ gw)

we
subject to
Z Ymbsjt <1 VbEB,SES,jGJ,tGT (3.2)
meM
Y Yo < 1 VneNpje T keKjteT (3.3)
seS
E Z ésstjkt < Z Z Ymbsjt < Z Z 3sstjkt Vs €S,
ne./\/}k kE]Cj meMbeB nE/\/}'k kG’C]'
jeg,teT (3.4)
Yo N Yo < te VieTkeKteT (3.5)
seS nE/\/}'k
Yo NN Y < 0 V€T HET (3.6)
meMbeBseS
Z Z stjkt < agjt VseS,jedJ, teT (3.7)
nEJ\/}k kGICj
YN Yy < aye  YbEBjETtET (3.8)
meMseS
_ di
Yo Y (b)Yt < Fp— (5 + AL) Yeue Vs € S,n € N,
meM beB Ust
jeJ keK,teT (3.9)

Yipsip € {0,1} Vme M,be B,s€ S,je€ J,t €T (3.10)

stjkt € {O/ 1} Vs e S,ne ./\/]'k,j cJ, ke IC]‘,t € T(3.11)

with Q(Y, (%) being the solution of the following second-stage problem:
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Q(Y/ Cw) = Mg’(nlz'{n%ize Z ( Z CmeftXmeftw + Z Cmithmigtw
AP e T Ne,/e(TUK,TUG) (i.8)€(Z,9)
+ Z E Z Z Cmbsjktmesnjktw + Z hmthmjtw
beBseS neNj (jk)e(T,K) jeJUK
YmeM 1beB LaseS LaneNy Lkek Xmbsnjktc
+) = !
jer T \Cjt = Lmem LveB Lses Lneny, Lkek Xmbsnjktew
)y Ygeg Xk
Z CZt <_ meM Zgeg Tmigiw > + Z nmgtumgtw> (3-12)
kek Ckt — LmeM deg kagtw g€G
subject to
Z Xmijtw + Z Xmigtw < PuitwVm € M,ieZ,teT,we (3.13)
jeJdi g€G;
Z Xmijtw +(1— (Xm)Hmj,t—l,w = Z Z Z Z mesnjktw + Hmjtw
i€Z; beBseS neNj kek;
VmeM,je J,teT,we) (3.14)
Z Z Z Z mesnjktw = Z kagtw + Hyuktw — (1 - “m)Hmk,t—l,w
beBseS nE.A/}kjEJk gegk
Vme M,ke K, teT,we (3.15)
i€T, kelq
Y Hujo < hvje UK teT,we (3.17)
meM
Z mesnjktw < min{wjktwrwb}ymbsjtvm eEM,beB,
nG.N}k
seS,jeJ ke, teT,weQ (3.18)
X .
y ¥ (M> < 0 YypsitVm e M,b € B,s €S,
nE/\/}'k kGICj pm
jeJ,teT,we) (3.19)
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Y Y Y Y Y Xubajpw<Cie¥j € Tt € T,w € Q(3.20)

meM beBseS neNj keK;

Y. Y Xugto<tuVk e K, t € T,w € Q(3.21)
meM gegy

Xigteor Xmijkbsntcor Xmkgteor Hmjtor Hmnktor Umgtw ERT (3.22)

The objective function (3.1) is the sum of the first-stage costs and the expected
second-stage costs. The first-stage costs represent the fixed costs associated with
using towboats and loading and unloading commodities into the barges. Con-
straints (3.2) ensure that only one commodity of type m € M can be loaded to a
given barge b € B in time period t € 7. Constraints (3.3) restrict the usage of only
one towboat of type s € S in a given trip n € Nj; between each origin-destination
pair at time period t € 7. Constraints (3.4) set restriction on the minimum (J,)
and maximum (Js) number of barges that can be connected with a given towboat
s € §. Constraints (3.5) restrict the maximum number of possible trips (Tj;) be-
tween each origin-destination port (j, k) € (J,K) in a given time period t € 7.
Constraints (3.6) indicate the maximum availability of barges (6);) in a given port
j € J at time period t € 7. The unavailability of towboat and barge, primar-
ily due to periodic maintenance activities, are captured by binary parameters a;;;
and apj; in constraints (3.7) and (3.8). Constraints (3.9) restrict the maximum time
availability (fjk) for a towboat s € S to travel between each origin-destination port
(j,k) € (J,K) in a given time period t € 7. Finally, constraints (3.10) and (3.11)

set the integrality constraints.
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The objective function of the second-stage costs consists of seven terms: the
tirst three terms represent the transportation costs of flowing commodities across
the entire network; the fourth and fifth terms represent respectively the cost associ-
ated with storing commodities at the source and destination ports and commodity
shortage costs at the markets; finally, the last two terms in the objective function
capture the congestion cost at the source and destination ports. Constraints (3.13)
restrict the availability (¢,is,) of commodity m € M at a supply site i € Z in time
period t € T under scenario w € ). Constraints (3.14) and (3.15) are the flow bal-
ance constraints which ensure that at a given time t € 7, commodity m € M can
be either stored or transported in a source or a destination port j € J |JK. Con-
straints (3.16) ensure that at a given time period t € T, the demand (dmgt) for com-
modity m € M can be satisfied either through the inland waterway transportation
network or through an external supply source via paying a higher penalty cost of
Ttmgt. Constraints (3.17) set the storage capacity of a port j € J UK to Ej. Con-
straints (3.18) and (3.19) handle the weight and volumetric capacity restriction for
a barge b € B. Note that the dredging impact is captured via constraints (3.18)
where it is shown that at each time period t € T, a barge b € B is restricted to
carry the minimum of {@jk,, W} amount of commodity between each source-
destination pair. Constraints (3.20) and (3.21) set commodity processing capacity
of port j € J |J K at time period t € 7. Finally, constraints (3.22) are the standard

non-negativity constraints.
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3.3.1 Linear Reformulation

The presence of congestion terms in the objective function (3.12) makes the
model [IPM] nonlinear. To linearize these nonlinear congestion terms, we adopt
the linearization technique introduced by Elhedhli and Wu [34]. This subsection il-
lustrates the step by step linearization process of the first congestion term in (3.12).
Let us first introduce a non-negative auxiliary variable R := {Rji, }je7teT wen

such that:

R w:( LimeM LbeB LiseS Zne./\f]-k Ykek mesnjktw
7t

= VieJ, teT,weQ (3.23)
Cjt — ZmEM ZbeB ZSES Zne]\/jk ZkelC mesnjktw) J

The terms in constraints (3.23) can be rearranged as follows:

R.
Y Y Y Y Y X = (f—f“{)ajtw cTteT,wen (329)
1+ R]tw

meMbeBseS neNy kek

Rjtw
1+ Rjtw
Proof: Differentiating function f(Rj,) with respect to { R }je 7 teT ,weq, we ob-

Lemma 1 The function f(Rj,) = ( ) is concave in Rjy, € [0,00).

tain the following first and second derivatives:

5 R'tw 1
() -k
f( ]tw) (SRjtw 1+Rjtw (1+R]’tw)2 B

(52 R'tw )
"(R: ) — ( / ) -~ <0

Since the first derivative is positive and the second one is negative, we can con-

clude that the function f(Rj,) is concave in Ry, € [0, 0] n

Lemma 1 proves that the function f(Rjy,) is concave. Note that this function can

be outer approximated by a set of tangent cutting planes, denoted by set P'. For
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a given set of points p; € P!, we outer approximate the function f(Rjy,) using

Taylor series approximation and by a set of piecewise linear functions that are

tangent to f(Rjy,) at points {R}'fw}][J ew as follows:
F(Riuw) =~ FREL) + F(RE)(Rj — RIL)
p
Rjtw (R]tlw)z
(1+RG,)?  (L+RE)?

since f(Rjy,) is concave in Rj;, € [0, o0], the function can be expressed as follows:

4
R'tw . R'tw (R'tlw)z
— Y — min ! J
(14 Rjww) — prept L(L+RL)2 - (14 RE)?

This is equivalent to the following set of constraints :

R'tw R'tw (Rptlw)z
J < ! / (3.25)
(14 Rjww) = (1+RE )2 (1+R] )2

where {R}Tw }ieg teT weq are the set of points used for approximating (3.25). We
now derive constraints (3.26) from constraints (3.24) and (3.25) which are added to

model [IPM] for linearizing the first congestion function in objective (3.12).

R R’,’tl 2

Y YL L L X < (s ot (g ) & 320

mMEM bEB sES neNy kek (1+ thlw)'?- 1+ R}’fw
Vie J,t€T,weQ,p Pl

Rijw € RT VjieJ,teT,we (3.27)

Following the same approach, we can introduce another non-negative auxiliary
variable W := {Wiyy, tkekc teTweq for the second congestion term in objective

(3.12). Likewise, constraints (3.28) and (3.29) are added to model [IPM] for lin-
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earizing the second congestion term in objective (3.12) where {W,fti] Yrek teT we Q,preP?

are the set of points used for approximating (3.28).

W B WPZ 2_
) Zkagtw < (%)%H‘(%) Ckt

meM geg 1+ ktw I+ ktw
Vke K,teT,weQ,p; € P? (3.28)
Wio € RYWkeK,teT,weQ (3.29)

Model [IPM] can now be linearized as follows, referred to as [LIPM]:

[LIPM]  Minimize ) ) Z( Yoo YsYoure + Y, ) nmthmbsjt)

SES JET teT “\neNj kek; meM beB

+ Z PwQ(Yr c“)

we)

subject to (3.2)- (3.11) and with Q(Y, %) being the solution of the following lin-

earized second-stage problem:

Q(Y/ gw) = Mz)'(nlgn%ize Z ( Z CmeftXmeftw + Z Cmithmigtw
AR teT \e,f)e(TUK,TUG) (i.8)€(Z,9)
+ Z Z Z Z Cmbsjktmesnjkta) + Z hmthmjtw
beBseS neNj (jk)e(T,K) JEJUK
+ Z TingtUmgtw + Z C;‘)tRjtw + Z Clztwktw) (3.30)
g€g jeJ ke

subject to (3.13)-(3.22) and (3.26)-(3.29). We further denote [LIPM] as [LIPM](P!, P?)
where it can be shown below in Proposition 1 that there exist at least one p! € P!

and one pz € P? for which constraints (3.26) and (3.28) can be solved at equality.

Proposition 1: There exists at least one constraint in (3.26) and one in (3.28) for which

model [LIPM](P*, P?) will be binding at optimality.
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Proof: We first prove that 3p; € P! in (3.26) for which [LIPM](P!, P?) will be
binding at optimality. Likewise, one can similarly prove that 3p, € P2 in (3.28)
for which [LIPM](P?, P?) will also be binding at optimality. After rearranging the

terms, constraints (3.26) can be rewritten as follows:

Rjtw > (1+RP1

P1 N2
jtw R'l)

Jtw

v (Zme/\/l YbeB LseS LneNy Lkek ijkbsntw) iy
E]'t

Vie J,t€T,weQ,p Pl (331)
Since {Rjtw } jeJ teTwen holds positive coefficient in the objective function (3.30),

[LIPM](P?', P?) only reaches to an optimum value when Ry, is minimized. This

indicates that Vj € J,t € T,w € Q,3p; € P! for which (3.31) holds with equal-
)2 (ZmeM Y beB YseSs Ene/\/}k Ykek ijkbsntw> (

Cijt

RPl

ity if (1+ R%! e

tw )2 > 0, else
Rjtw = 0. Let 0j, be the average utilization of port j € J which can be defined as

follows:

Eme/\/l YbeB Lises Zne]\/}k Ykek ijkbsntw
Ojtw *= =
Cjt

The above inequalities can be expanded in further as follows:

P1\2
Rjto)

YmeM LbeB LuseS LneNy Lkek ijkbsntw
0 < (1+R}’;L)2( K >_(

E]-t
2 2
= (14 RYoj0 — (REL)

(Qjtw — 1)(R]r']t1w)2 + ZthwR]r']tlw ~ Qjtw
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Applying quadratic equation rule, we see that R tw can be bounded as follows:

p1
R]tw

—Ojtw — /CQjtw Q]thr\/Qth}v c pl.

1- Ojtw A Ojtw
For 0 < ¢jiw < 1, the term <_Q]t“’ —/Ojtw
1- Ojtw

the model will turn out to be infeasible. Therefore, without any loss of generality,
oty
1- 0 jtw
3p1 € P! for which (3.26) holds with equality, we then need to show that thlw
|: Q]tw + vV Q]tw
' 1- Q]ta;

(3.23), then we can write the following;:

) will yield a negative value; hence,

we can then write R’}

jtw . Further, to prove that

} . Note that if Rj;, becomes positive via constraints (3.18) and

. L
0< R}T ~ Rjtw = Qjtw < Qjtw T /Qjtw
1- Qjtw 1- Ojtw

This proves that Vj € J,t € T,w € Q,3p; € P! for which, at optimality, (3.26)

holds with equality. ]

3.4 Solution Approach

By setting |Q)| = |T| = [Nj| = |S| = |B| = 1, it can be shown that the re-
formulated model [LIPM] is essentially a variation of the fixed charge network flow
problem which is already known to be an AN'P-hard problem [12, 65]. Therefore,
state-of-the-art commercial solvers (e.g., Gurobi, CPLEX) will find it difficulty to
solve large instances of [LIPM], as we also experienced in our computational re-
sults discussed in Section 5.5.3. To alleviate this computational challenge, we pro-
pose a parallelized hybrid decomposition algorithm based on constraint generation

algorithm embedded with a sample average approximation algorithm and a modified
104

www.manaraa.com



L-shaped algorithm, in order to solve the model to optimum (or near-optimum) in

a reasonable timeframe.

3.4.1 Constraint Generation Algorithm

Model [LIPM] generates a pool of constraints given by the equations (3.26)
and (3.28). Evaluating the model by considering all these constraints at a time
can be considered extremely challenging. Therefore, we introduce the constraint
generation (CG) algorithm [153, 143] that can efficiently and effectively solve model
[LIPM] despite being generating large number of constraints at once. Essentially,
the algorithm starts by solving model [LIPM] with a subset of constraints obtained
from equations (3.26) and (3.28) while additional constraints are added to [LIPM]
per requirement. The algorithm terminates upon reaching the optimality gap to
an acceptable threshold limit. In case if the termination criterion is not met, a new
set of constraints are generated and added to [LIPM] and the process continues.
The algorithm is detailed as follows:

Let v[LIPM] be the objective function value of problem [LIPM] and (Y4, X7, H, U7)
be it’s optimal solution. For any iteration g, we let LB7 and UB7 to represent the
lower and upper bound of the original problem [IPM]. We can then obtain the
lower and upper bound of the optimal objective function value of problem [IPM]

as follows:
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LB = v[LIPMI(P{,P])

= Z{Z Z( Yo ) Vs Venike+ Y, Y, metYmbsjt>

teT \seSjeJ ‘\neNj kek; meM beB

+ 2 Pw( Z Crneft Ximeftw T Z Cmigt Xmigtcw
we (e,f)e(TUK,TUG) (i.8)€(Z,9)

+ Z Z Z Z Cmbsjktmesnjktw + Z hmthmjta)
beBseS neN (jk)e(T,K) jEJUK

+ Z 7ngtumgtw + Z C]O'tRjtw + Z CZthtw> } (3-32)
g€g jeJ kel

ust = S{LL( L F vkt T F i) + T o

teT \seSjeJ “\neNjy kek; meM beB weD
2 CmeftXmeftw + Z Cmithmigtw +
(e.f)e(ZUK,TUG) (i.g)e(Z,9)
Z Z Z 2 Crbsjkt Xmbsnjktw + Z hmthmjtw + Z Tongt Umgtew
beBseS neNj (jk)e(T,K) jeJuUK g€g

n Z 0 ( YmeM LbeB LscS Zne]\/jk Y ke Xmbsnjktw )
| =
ic7 " \Cjt = Linem Lve Lses LneNy Likek Xmbsnjktc

+ Z Cit (_ YimeM deg kagtw )) } (333)

kek Ckt — Lme M deg kagtw

The validity of the lower and upper bound, provided by equations (3.32) and

(3.33), are given below in Proposition 2 and Proposition 3.

Proposition 2 For any given subset of points {RZL)}qu cpt and {W,Z;}qu cp2s (3.32)
provides the lower bound of the optimal objective function value of [IPM].
Proof: Since [LIPM](P? , Pg ) is the relaxed version of problem [LIPM], v[LIPMI(P;, Pg )

provides a valid lower bound to the optimal objective function value of problem
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[LIPM]. Let v[LIPM] and v[IPM] to be the optimal objective function value ob-
tained from solving [LIPM] and [IPM], respectively. Therefore, we can state that
v[LIPMI(P{, PJ) < v[LIPM]. Now, [LIPM] itself is an approximation of problem
[IPM] which implies that v[LIPMI(P{, PJ) will also serve as a valid lower bound
of the optimal objective of the original problem [IPM]. Therefore, we see that the
following relationship holds: V[LIPM](Pi] , Pg) < y[LIPM]< v[IPM]. [
Proposition 3 For any given subset of points {RZL)}P? cp1 and {W]ffw}Pg cp2s (3.33)
provides the upper bound of the optimal objective function value of [IPM].
Proof: Problem [LIPMI(P{, PJ) includes all the constraints of original problem
[IPM]; therefore, any solution feasible to [LIPM](P;7 ,Pg ) will also be a feasible
solution to [IPM]. This implies that the objective function value of [LIPM] (i.e.,
v[LIPM]), evaluated at (Y7, X7, H7, U7) (shown in (3.33)), provides an upper bound
to the optimal objective value of problem [IPM]. This completes the proof. ]
At the beginning of the CG algorithm subsets P] C P! and PJ C P2 of cuts are
generated where P/ =!and 4 =! can be empty or may contain some chosen initial
points. Let {szlw}P{’ cp1 and {W,ftzw}qu 2 be the initial set of points in P] C P!
and P C P?, respectively. These points are used to generate initial subset of
cuts that are essentially used to approximate the congestion functions f(Rj,) and
f (Wit ), respectively. Having these cuts, the resulting solution of the problem
[LIMP] provides a valid lower bound (LB7) of the original problem [IMP] (proof

can be found in Proposition 1). Next, this solution is utilized in equation (3.33)

to obtain an upper bound (UBY) (proof can be found in Proposition 2) of the CG
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algorithm. The algorithm terminates when the gap between the UB7 and LB falls
below a prespecified threshold limit €. If the termination criterion is not met, we

generate new sets of points {R!"*} and {W/"“} utilizing the current solution as

jtw ktw
follows:
q
anew EmeM ZbeB ZseS ZneN}k ZkEK mesnjktw
it T = q
J Cjt — YimeM LbeB LseS Zne/\/jk Ykek mesnjktw
and

q
Em eM Zgég kagtw

Prew
Wktw

= q
Ckt — ZmEM deg kagtw

The pseudo-code of the CG algorithm is given in Algorithm 1.
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Algorithm 1: Constraint Generation Algorithm

Initialize, g <— 1, €, UBY < +o00, LBY <— —o0
terminate < false
Choose an initial set of points {RZL}P? cp1 and {Wlftzw}chpz

while terminate = false do
Solve [LIPMI(P{, PJ) to obtain v[LIPM] (P{, PJ) and (Y7, X7, H7, U7)

Update the lower bound: LB7 < v[LIPM] (P{, PJ)

Update the upper bound: UB7 using equation (3.33)

if % < ¢ then

| terminate < true

else
Generate new points:

q
ZmeM ZbeB ZseS Ene/\/jk ZkelC mesnjktw

Prnew __
itw T = q
J Cjt - Zme/\/l ZbEB ZSES Ene./\/’jk EkeiC mesnjktw
q
Whnew _ LmeM deg kagtw
ktw

Ct — ZmeM deg XZikgtw
RPMHI _ RPLQ U{anew}

jtw jtw jtw
p2q+1 p2.9 Pnew
Wktw _ Wktw U{Wktw }
end
g<q+1
end

Proposition 4 The proposed CG algorithm can be solved in a finite number of iterations.
Proof: In model [LIPM], variable {Xpsujkio } is bounded by constraints (3.18)-

(3.20). This implies that the values of {Rji, }vje 7 teT,weq Will also be bounded,
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essentially ensured via constraints (3.23). To prove that the CG algorithm is ter-
minated in a finite number of iterations, we eventually need to show that the
{RZ’ZZ’” }WG 7teT weq values are not repeated in coming iterations. Let us define g
as an intermedjiate iteration of the CG algorithm when UB7 > LB1. If (Y1, X7, HY, U7)

be the solution to [LIPMI(P], PJ), then the new point generated in this iteration

would be:

q
Prew __ ( Zme./\/t ZbGB ZSGS ZnE-A/jk ZkEK mesnjktw
jtw T

- 7 ) VieJ teT,weQ
Cit — Lime M LbeB Lses Zne/\/jk Ykek mesnjktw

Now consider that the {RZ’ZZ”}WE J.teT weq Values match with one of the val-
ues already generated in the prior iterations. The following relationship can be

obtained from constraints (3.25):

Prew Prew\2
Rjtw 1 R7 + (Rjtw )
new\ — new it new
(L+RE") — (L+RE)2 T (14 RE)?
Prew Prew q Pnew\2
= Rjtw (1 + Rjtw ) < Rjtw + (Rjtw )

Prew Prew \2 q Prew\2
= Rjtw + (Rjtw ) < Rjtw + (Rjtw )

= R <RI

jlw — Ytw
With this relationship, we will have the following:

LB =vILIPMI(P{,Py) =E+}_ ) ) R}, =E+ ) ) chRE
teT jeJ we) teT jeJg

( Lime M LbeB LseS LneNy Lkek Xmbsnjktw )
Cjt = LimeM LbeB LseS LneNj kek Xmbsnjktw

S

teT jeJ we)
YmeM XbeB LseS LneNy kek Xmbsnjktw
> max{ UBL,E+ ) ) cho.t(_ o 5€6 =neNik ] )
(o7 jeqwehr | \Cjt = LimeM LveB Lises LneNy Likek Xmbsnjktw

> UBY
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where

g =) (Z Z( Lo L Yot ) ) ”mb*Ymbsﬁ) F e <<e,f>e< 5

teT \seSjeJ ‘\neNy kek; meMbeB we TUK,JUG)
Cneft Xmeftw + Z Crigt Xmigtw + Z Z Z 2 Crbsjkt Xmbsnjktw +
(i,9)€(Z,G) beBseS neN (jk)e(T,K)
Z hmthmjtw + Z nmgtumgtw + Z Cztwktw)>
jeJUK g€G kek

This violates our initial assumption UB7 > LB9. This implies for any given

iteration g, at least one different {R!! } is generated, meaning that the number

jtw
of values taken by {R;fw} is finite. Likewise, we can prove that for any given
iteration g, at least one different { W,ftzw} is generated and the number of values

taken by {W/? } is finite. This proves that the CG algorithm terminates in a finite

number of iterations. m

3.4.2 Sample Average Approximation

Model v[LIPMI(P{, P]) considers the stochastic nature of supply availability
of the agricultural products (¢;,it,) and waterlevel condition (k) that require
the evaluation of a large number of scenarios to ensure the robustness of the solu-
tion. Solving model V[LIPM](qu , Pg ) using CG algorithm for such a large num-
ber of scenarios is still considered challenging. To overcome this computational
challenge and to solve model v[LIPM](Pf , 733 ) in a reasonable timeframe, we em-
ploy a sampling technique, commonly referred to as Sample Average Approximation
(SAA) algorithm. This technique has widely used by many researchers in different
application areas including logistic and supply chain design [119, 21, 120, 107, 108],
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routing [142], production-routing [1], while [66], [92], [91], [75] discussed the sta-
tistical significance and convergence properties of this algorithm.

In SAA, random samples are generated and the expected value function is ap-
proximated by the corresponding sample average function. This process is con-
tinued until a pre-specified tolerance gap is achieved. Specifically, SAA selects
a sample set {wr, wy, ...,w‘@‘} of O scenarios from the set of all available scenar-
ios () following a probability distribution IP. Then, the corresponding O scenario
set problems are solved repeatedly until a pre-specified tolerance gap is achieved.
The lower bound of the CG algorithm is now approximated by the following SAA

problem.

LBT = v[LIPMI(P?C,PI°)

- L(Z (L L vt T ot

teT \se€SjeJ \neNy kek; meM beB
1 O
+@ ( Z CmeftXmefto + Z Cmithmigto
0=1 Me,f)e(ZUK,TUG) (i,9)e(Z,G)

+ Z Z Z Z Cmbsjktmesnjkto + Z hmthmjto

beBseS neNj (jk)e(T.K) jeETUK
+ Z ToingtUmgto + Z C;‘)tRjto + Z Cztwkto>) (3.34)

g€g jeJg ke

With the increase in size of O, the optimal solution of [LIPM](??’O, Pg’o) and
the corresponding optimal objective value v[LIPM](Pf’O,Pg’O) converges with
probability one to an optimal solution of the original problem [IPM] [66]. How-
ever, increasing the size of O significantly increases the computational time asso-
ciated with solving problem [LIPM](Pf , Pg ). In a nutshell, there exists a trade-off
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between the achieved solution quality and the computational burden associated
with solving the corresponding subproblems. We now summarize the steps in-

volved in implementing the SAA technique for solving [LIPMI(P], PJ) as follows:

1. Generate E independent supply and waterlevel scenarios of size |O] ie.,

{gh(@), g2(@), -, ()} and {@}(w), B2(w), ., B (W)}, Ve = 1., E
where ¢ = {Qpit,Ym € M,i € I,t € T,w € Q}, w = {wjktw,v]' €
J, ke K,teT,we Q}. After generating O scenarios, solve the following
corresponding SAA problem:

[LIPM(SAA)] Mznzmzze g(Y):=)_ <Z Y. ( Yo ) s Yenjn

teT \s€SjeJ ‘\neNj kek;

0
+ ) ) metYmbsjt) + ﬁ Y Qy, CO)) (3.35)
o=1

meMbeB

Fore =1, .., E, let vg; and Yo represent the optimal objective value and the
optimal solution of (3.35), respectively.

2. Next, we compute the average and variance of all the corresponding SAA
problems, referred to as v& and 0"_2,0, respectively.
E

1 E
W = S Y V6 (3.36)
e=1
2 1 £ e =0 2
O-VQE) = m 6:21 <VO — VE> (337)

Note that ¥2 provides a valid statistical lower bound on the optimal objective
function value (v*) for the original problem (3.32) i.e., V‘IE) > v* [92].

3. Select a feasible first-stage solution Y € Y, obtained from Step 1 of the SAA
algorithm, and use the solution to estimate the objective function value of
the original problem (3.32) using a reference sample O’ as follows:

- Z Z Z Z Z l/JStYSnjkt+ Z Z metYmbsjt) (3.38)

teT{seS jeJg <nej\/jk kel meMbeB

1 ©
L yay, @0)} (3:39)
|® | 0=1
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This estimator g, (Y) provides an upper bound for the optimal objective
function value of the original problem (3.37). This value is updated in each
iteration if the obtained value is less than that of the previous iteration. Let
O’ be a large set of randomly generated independent supply and waterlevel
scenarios such that O’ >> O. The variance of g, (Y) can be estimated as
follows:

Ué’(Y) = (|@/|_11)|@/|:é{ Z(Z Z( Z Z wstYS”]'kf_’_ Z

teT \seSjeJ “\neNy kek; meM

)3 Umthmbsjt> +Q(Y, ?)) - QO/(Y)}Z

beB

. Utilizing the estimators obtained in Steps 2 and 3 we calculate the optimality
gap (gapo r o (Y)) and its variance (Uéup) as follows:

gaporo(Y) = VE — 8o (Y)
O-é?ap - 0'(12)/(Y)+0€ﬂg

The confidence interval for the optimality gap can be computed as follows:

1/2
‘7‘1? — gO/(Y) +Za{(72/(Y) +0"_2,%)}

with z4:= ®71(1 — «), where ®(z) represents the cumulative distribution
function of the standard normal distribution.

3.4.3 L-shaped Algorithm

Step 1 of the SAA algorithm still requires solving a two-stage stochastic mixed-

integer linear program [LIPM(SAA)], which may still considered challenging based

on the size of the problem. This motivates us to develop a modified variant of

the L-shaped algorithm to solve [LIPM(SAA)] efficiently. L-shaped algorithm, pro-

posed by Laporte and Louveaux [69], is widely used in the literature to solve

a variety of network design problems such as [82, 115, 52]. In this sub-section,

we first introduce the basic L-shaped algorithm followed by different accelerated
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techniques, such as problem-specific valid inequalities, multi-cut, knapsack cuts,
scenario grouping and mean-value cuts, to solve [LIPM(SAA)] efficiently.
L-shaped algorithm separates the original problem [LIPM(SAA)] into two sim-
ple problems: an integer master problem and a linear subproblem. Let ®(Y) be the
expected value of the second-stage problem of [LIPM(SAA)]. An equivalent for-

mulation for [LIPM(SAA)] is given by [D-LIPM] as follows.

[D-LIPM]Migérgizez Z{ Yo Y ) v Y+ Y ) Zﬂmthmbsjt}

teT s€S “neNj jeJ kek; meMbeBjeJ
+0O(Y)

(3.40)

subject to (3.2)-(3.11), (3.13)-(3.22), and (3.26)-(3.29). In each iteration of the L-
Shaped algorithm, a relaxed version of problem [D-LIPM] is solved. Essentially,
instead of minimizing ®(Y), in this relaxed problem, the outer approximation of
©(Y) is minimized. Birge and Louveaux [16] showed that with finite number of
scenarios |O|, @(Y) resembles a piecewise linear convex function. Therefore, the
linear functions generated by the algorithm lie either on or below ©(Y). With
growing iterations, an improved approximation is obtained, and the process con-
tinues until an optimal solution is found. Laporte and Louveaux [69] showed that
upon meeting two conditions, L-shaped method can guarantee to provide an opti-
mal solution within a finite number of steps: (i) generation of valid optimality and

feasibility cuts and (i) ©(Y) is computable with the given solutions of first-stage
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variables. To approximate ©(Y), we formulate model [M-LIPM] as an approxi-

mation of model [D-LIPM] as follows:

[M-LIPM] ¢" = Minimize Y Z{ Yo Y ) s Yauj (3.41)

teT s€S \neNj jeJ kek;

LYY znmbtymbsﬁ}w

meMbeBjeJ

subject to (3.2)-(3.11), and
0 > 0+ 3 Y Y Y Y Gt Yowsit — Yousjt) V7 =1,2,3,...,R(3.42)
meMbeBseSjeJ teT
Problem [M-LIPM] is referred to as master problem of the L-shaped algorithm
where (3.42) are known to be optimality cut constraints. Let r € R be any iteration

number of the L-shaped algorithm. In [M-LIPM], an auxiliary free variable 0 is

r

introduced and the definitions for 6" and émbsjt

are provided below. For a given
tirst-stage decisions Y', obtained by solving [M-LIPM] in iteration r, the following

scenario-based subproblems [S-LIPM(o0)] are solved.

[S-LIPM(o)]  6;(Y,°) = Minimize Y ( Y. ConeftXmefto + Y
XHU T \(e,f)e(zUK,.TUG) (i.8)€(Z,G)
Cmigt Xmigto + 3 Y, Y Y Copsit Xmbsnjkto T Y
beBseS neNj (jk)e(T,K) jeJUK
hmthmjto + Z TongtUmgto + Z C]O'tRjto + Z Cloctwkto) (3.43)
g€g jeJ kek
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subject to (3.13)-(3.17), (3.20)-(3.22), (3.26)-(3.29), and

Z mesnjktoSTnin{wjkto;wb}ymbsjt Vme M,be B,seS,
TlE./\/—]‘k

jeJ kekK,teT (3.44)

X .
y ¥ (M) <O YppiVm € MbEBseS,,je J,teT (345
neNy kek; N Pm

Youbsj=Y psit : Cmbsjto¥Vm € M,b € B,s € S,j € J, t € TB.46)

Let & = {G,psjso|Vm € M,b € B;s € S,j € J,t € T,0 € O} be the dual
variables associated with constraints (3.46) for scenario o at iteration r of the L-
shaped algorithm. In each iteration r of the L-shaped algorithm, the solutions of
[S-LIPM(0)] are used (6}) to determine the value of 6" as used in the optimality
cut constraints in (3.42). We now use the following equations to derive the slope

coefficient ¢; . it and intercept 0" for constraint (3.42).

Zibsjt = ZPOC;IJS#O (3.47)
0cO

0" = Y pob, (3.48)
0€e0O

Note that for any given value of Y, constraints (3.16) ensure that the problem
(3.43) is always feasible. Therefore, we did not add any feasibility cut in the mas-
ter problem [M-LIPM]. Problem [M-LIPM] minimizes the outer approximation of
the convex function @(Y) in [D-LIPM]; therefore, the objective function value of
[M-LIPM] provides a valid lower bound for problem [D-LIPM]. The solution of
master and scenario based subproblems provide an upper bound for the original

SAA subproblem [LIPM(SAA)]. The L-shaped algorithm terminates when the gap
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between the upper and lower bound reaches to a predetermined threshold limit.
If not, an optimality cut (in the form of (3.42)) is added to [M-LIPM] and the al-

r

gorithm continues. Let us define Z;,,; such that Z}, ., = Y scs Yijeg LieT (Zne N
Y ke K; st Vonjkt + Lme M LbeB metYmbsjt) . The pseudo-code of the basic L-shaped
algorithm is now given in Algorithm 2.

We first attempt to solve [LIPM(SAA)] with basic L-shaped algorithm, but we
observe that the algorithm finds it difficulty even in solving small-size test in-
stances (considering the size of our real-life dataset) in a reasonable time. This
motivates us to investigate additional techniques to further improve the conver-
gence of the basic L-shaped algorithm. The aim would be to find optimum (or
near-optimum) solution in solving [LIPM(SAA)] on realistic-test instances in a
much shorter time. The following subsections present some proper accelerated
techniques to improve the computational performance of the basic L-shaped algo-

rithm.

3.4.3.1 Valid inequalities

To enhance the performance of the L-shaped algorithm, we first generate a
number of valid inequalities that can be added to master problem [M-LIPM].
These inequalities are derived by utilizing the special structure of our problem

[IPM]. The proposed set of valid inequalities are presented below:

o We first add surrogate constraints, in the form of constraints (3.49) as shown
below, to problem [M-LIPM]. The value of ¢ can vary between 0.0 and 1.0
while a value of ¢ equal to 1.0 ensures that all the demand will be satis-
tied through the inland waterway ports. Essentially, constraints (3.49) can be
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Algorithm 2: L-shaped Algorithm

Initialize, r <— 1, €%, UB" < +o00, LB" <~ —c0
terminate < false

while terminate = false do
Solve [M-LIPM] to obtain Y’, v[M-LIPM], and Z, .

if LB" < v[M-LIPM] then
| Update the lower bound: LB" <— v[M-LIPM]

end

Solve [S-LIPM(0)] Vo € O to obtain {¢’ , ..} and 6},

mbsjto

Calculate {7 jt} and 6" using equations (3.47) and (3.48)

if UB" > 0" + Z],,; then
| Update the upper bound: UB" < 0" + Z}, .

end

if UE_LB) < el then

| terminate <+ true

else
| add optimality cut (3.42) to [M-LIPM]

end

r<r—+1

end

used to set a lower bound on the overall barge usage to ensure the demand
for commodity m € M at each time period t € T is satisfied.

YoM ) Y@y > Y 0dpg Vme M, teT  (3.49)
beBseSjeJ g€G

e While selecting between a number of barges of similar capacities, solver may
encounter with symmetries that may result in elongated search times. To
address this issuue, the following lexicographic ordering constraints [122, 63]
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((3.50) and (3.51)) are generated which set priorities on barge selection. Such
priorities help to break the duplications caused by the barge selection sym-
metry, therefore, accelerate the performance of the branch-and-bound pro-
cess.

Vv

Y1,p—1,st Yipsjt Vb e B\ {1},s€S,j e J,t &350)
m m
Z 2(m_p)Yp,bfl,sjf > 2(m_p)Ypbsjt
p=1 p=1
Vme M,be B\{1},s€S,je J,teT (351)

e Symmetries may also arise between towboats of similar capacities. Consider
S, as the subset of towboats of same type, i.e., S, C S and s, € S,, where s,
represents a set of the members belonging to S, in ascending order. Similar to
constraints (3.50) and (3.51), following lexicographical ordering constraints
((3.52) and (3.53)) are applied for each Sé to set the priority in utilizing tow-
boats of the same type.

Y, > Y, Vs, €S,\{1},n€Ny,je T kek,teT(352)

se—lnjkt  —  “snjkt
> Vs, € S,\ {1},n € Ny, j € T,k € K,t 3F3)

‘[Js;fl,tyséfl,njkt - wsétYsénjkt

e Constraints (3.54) and (3.55) generate a lower bound on the number of barges
that are required for satisfying the demand between any time interval [ty, f5]
where t; > t1. If the cumulative demand over period [t1, tp] is greater than
or equal to the maximum possible inventory held () or initial inventory
(Hyuk00), then at least a certain number of barges need to be used in that spe-
cific time interval.

i t _
ty Egeg t:ztl Udmgt - ZkelC hk
22 ) 2 Yot 2 —
beBseS jeJ t=h Wy
Vm € M/ (tll t2) € T/ th > 1 (354)
_ b
ty deg t_Zt ‘Tdmgt — Ykek oo PoHmkoo
22 2 Y Yot 2 : —
beBscS jeJ t=h Wy
Vme M, (f,b) €T, tbh > h (3.55)
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e Similar to constraints (3.54) and (3.55), constraints (3.56) and (3.57) set lower
bounds on towboat selection between any time interval [t1, to] where t; > #.
In both constraints, d; denote the capacity of the most powerful towboat S.

i 5 _
t) YmeM Egeg )» Udmgt — Ykek P
t=H
Y1 2 ) ) Yk 2 —=
seSneN jeJ kek t=t; wWyos
V(ti,t) €T, ta >ty (3.56)
_ b
ty YmeM (deg t—zt ‘Tdmgt — Ykek LocO PonkOo)
2o 2 2 ) Yk = —
S€S neN jeT kek t=h W05

v(tll tZ) € TI thh > H (357)

3.4.3.2 Multicut L-shaped Algorithm

In each iteration r of the basic L-shaped algorithm, only one optimality cut is
added to master problem [M-LIPM]. This may require several iterations before
sufficient information can be gathered and passed from the subproblems to the
master problem [M-LIPM] via constraints (3.42). To overcome this problem, Birge
and Louveaux [17] propose a multi-cut L-shaped algorithm where instead of adding
one optimality cut, as in the case with basic L-shaped algorithm, |O| number of
cuts, one for each scenario subproblem [S-LIPM(0)], are constructed and added to

[M-LIPM]. The optimality cut constraint (3.42) can now be modified as follows:

90 Z 9; + Z Z Z Z Z Cmbsth(YMijt - Y}qusjt) VT' = 112/ 3/ Y R/O (6&)
meMbeBseS jeJ teT
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Note that variable 6 and dual parameter ¢ are now replaced by 6, and ¢psjto,

;
mbsjt

respectively. Accordingly, the objective function of the Benders master problem

[M-LIPM] is now modified as follows:

[MC-LIPM] ¢" = Minimizez Z( Z Z Z st Ysnjke + Z Z Z Umthmbsjt)

teT s€S \neNy jeTJ kek; meMbeBjeJ

+ Z Poeo

0€O

(3.59)

Note that with the introduction of multi-cuts in [M-LIPM], the overall algo-

rithm may now require less number of iterations to reach the optimality gap com-
pared with the classical L-shaped algorithm; however, this reduction may be achieved

at a cost of increasing the running time in solving the Benders master problem, pri-

marily due to adding large number of new constraints.

3.4.3.3 Knapsack inequality

We now employ knapsack inequalities [119, 80] to enhance the performance of
the branch and bound process and to expedite the convergence of the overall L-
shaped algorithm. Addition of these cuts, along with optimality cut (3.42), es-
sentially help state-of-the-art commercial solvers (e.g.,, GUROBI, CPLEX) to de-
rive various valid inequalities that eventually help the convergence of the basic

L-shaped algorithm. Let UB" and LB’ be the best known upper and lower bounds
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for the L-shaped algorithm at iteration r. The following knapsack inequalities can

be added to [M-LIPM] in iteration r + 1:

UB" > Z 2( 2 2 Z 1Pststjkif + Z 2 Z metYmbsjt) + 6" (3-60)

teT s€S \neNy jeJ kek meMbeBjeJ

LB" < Z Z( Z Z Z lpstst]'kt"' Z Z Z Umbtymbsjt) +0 (3.61)

teT s€S \neNy jeT kek; meMbeBjeJ

3.4.3.4 Scenario Bundling

The multi-cut L-shaped algorithm, discussed in subsection 3.4.3.2 [17], usually
improves the computational performance of the basic L-shaped algorithm. How-
ever, adding too many cuts at each iteration, more specifically, |O| number of cuts,
can degrade the overall performance of the L-shaped algorithm. This is primarily
due to the reason that the added disaggregated cuts can significantly increase the
solution time of the master problem [M-LIPM]. The performance further degrades
over iterations, since the master problem [M-LIPM] now need to carry significant
amount of cut information prior to the current iteration. To alleviate this challenge,
we adopt a scenario bundling strategy [1, 46] where instead of defining model [S-
LIPM(0)] for each scenario 0 € O, we now define each subproblem with respect
to a scenario bundle [S-LIPM(7)], denoted by set v € I', consisting of a number of
scenarios. Note that the bundling can be done by considering different criterion
specific to the model (e.g., high, medium, and low supply/waterlevel scenario
bundling). Let |O| be partitioned into |I'| bundles and p, = } ,c, 0. We now

solve model [S-LIPM(7)] for each bundle v € T as follows:
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[S-LIPM(7)] 0-.(Y, ") = Minimize Z Z p0< Z Cineft Xmefto +
XHU [eT o€y \(efe(zUKTUI)

Z Cmithmigto + Z Z Z Z Cmbsjktmesnjkto +

(i,9)€(Z,6) beBscS ne/\/jk (jk)e(T.K)

+ Z hmthmjto + 2 TomgtUmgto + Z C;')tRjto + Z Cztwkto>
jETUK 8€Y jeg kek

(3.62)

subject to (3.13)-(3.17), (3.20)-(3.22), (3.26)-(3.29), and (3.44)-(3.46). Likewise, the

master problem and the optimality cut are updated as follows:

[SB-LIPM] ¢" = Minimize ) _ 2{ Yo Y ) et (3.63)

teT s€S “neNjy jeJ kek;

Z Z Z nmthmbs]’t} + Z p’Ye’Y

meMbeBjeJ yel

and

Oy > 004+ Y Y Y Y Gunsity (Yobsjt — Ysj)  ¥r=1,2,3,., Ry €T (3.64)
meMbeBseSjeJ

3.4.3.5 Mean Value Cuts

Type A: The earlier iterations of the L-shaped algorithm produces low qual-
ity first-stage decisions Y, primarily due to lack of useful information passed from
the subproblems to master problem via optimality cut constraint (3.42), which pro-
longs the running time of the overall algorithm. To alleviate this problem, Batun
et al. [14] propose a mean value cut that can be added in the master problem [M-
LIPM] in order to help obtaining a good lower bound from the earlier iterations
of the algorithm. The aim is to speed up the convergence of the overall L-shaped

algorithm. Essentially, a mean value cut, more specifically, referred to as Type A
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mean value cut, is generated using the subproblems defined under a mean-value sce-
nario 0 (a scenario comprised of the mean values of the uncertain parameters). The
newly generated cut helps to strengthen the lower bound of the free variable 6 in
an attempt to generate high quality feasible solutions during earlier iterations of
the L-shaped algorithm. To generate this inequality, the following additional pa-

rameters and decision variables are introduced:

Auxiliary parameters:

® (i mean amount of product of m € M available in supply site i € 7 at
time period t € T

® Wj: mean allowable weight Wikt that can be carried between the channel
(j,k) € (J,K) at time period t € T

Auxiliary decision variables:

® X,uigr: mean amount of commodities of type m € M transported along arc
(i,¢) € (ZUG) at time period t € T

® Xy f mean amount of commodities of type m € M transported along arc

(e,f) € (ZUK,TJUG) at time period t € T

° mesn]-kt: mean amount of commodities of type m € M transported using
barge b € B of towboat s € S of trip n € Nj; along arc (j, k) € (J,K) at time
period t € T

e H,,j: mean amount of commodities of type m € M stored in portj € J UK
at time period t € T

e Uy mean amount of commodities of type m € M shortage in market
¢ € G at time period t € T
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The following additional constraints are added to the master problem [MC-

LIPM]:
Z Xmijt + Z Xmigt
€T g€G;
Y. Xomijt + (1 — am) Hyjp—1
IGZ]

Yo X X Kubsnjue

beBseS neNj jeJi

2 Xmigt + Z kagt + Umgt

i€Zg keKg
) Huj
meM

Z mesnjkt
nG./\/}'k

Z Z (mesnjkt)
neNykek; N Pm

LY ) X ), Kuwswie

meMbeBseS neNjy kek;

Z Z kagt

meM geGy

LX) Y Y Koo

meMbeBseS neNy kek

Z Z kagt

meM geg

IN

IN

IN

IN

IN

IN

IN

PmitVm e M,ieI,t €T (3.65)
Z 2 2 Z mesnjkt +Hmjt

beBseS neNj kek;

Vme M,je J,teT (3.66)
Z kagt + Hmkt - (1 - ’Xm)Hmk,t—l

8€Gk

Vme M,ke K,teT (3.67)
dmgtVm € M,g € G, t €T (3.68)
hvje UK, teT (3.69)

min{wjkt,wb}Ymbsjt Vme M,beB,seS,

jeJ kekK,teT (3.70)
vmebS]-th eM,beB,seS,
jeJg,teT (3.71)
GVie T teT (3.72)
cuVke K,teT (3.73)
R RPL 2
jt - jt -
———— |+ | ——= | C; 3.74
((1+R}’f)2) I (1+R}’f) ro B
Vie J,teT,p P!
S 1)
775 |k T+ = Ckt
((1+ )2 1+ WL
Vke Kt €T,preP? (3.75)
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Wy € RY'WkeK,teT (3.76)
Ry € RVjeJ,teT (3.77)

Xmigt/ ijkbsntr kagt/ Hmjtr Hmkt/ Umgt € RT (3.78)

Additionally, the following lower bound strengthening cut is added to [MC-

LIPM]:

o > Z ( Z CmeftXmeft + Z Cmigtxmigt +
teT Ne,f)e(ZUK,TUG) (i.8)€(Z.9)
YO )Y Y s Xmpsnie + Y, MwppHumje + Y gt Ungr +
beBseS neNj (jk)e(T,K) jeJUK g€g
Y. C;‘)tRjt +) CZtht) (3.79)
jeJ kek

Type B: We now generate another type of mean value cut, referred to as Type B
mean value cut, where scenario bundling/grouping technique (discussed in Section
3.4.3.4) is utilized under the mean value framework.These cuts are derived from
mean scenario group y where 4 denote the mean scenario from all scenario o under
any specific scenario group/bundle <. The newly generated cuts are then added
to the master problem [SB-LIPM] in an attempt to improve the convergence of
the basic L-shaped algorithm. In order to develop multiple mean-value cuts, the
following additional parameters and decision variables are introduced:

Auxiliary parameters:

® ¢pity: mean amount of product of m € M available in supply site i € 7 at
time period t € 7 under scenario group 7y

® Wiy mean allowable weight wjy; that can be carried between the channel
(j,k) € (J,K) at time period t € T under scenario group 7y
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Auxiliary decision variables:

® Xyigty: average amount of commodities of type m € M transported along
arc (i,g) € (ZUG) at time period t € T under scenario group 7

o Xyeft5: average amount of commodities of type m € M transported along
arc (e, f) € (ZUK,J UG) at time period t € T under scenario group 7y

° mesnjkw: average amount of commodities of type m € M transported using
barge b € B of towboat s € S of trip n € Nj; along arc (j, k) € (J,K) at time
period t € T under scenario group 7y

e H,j;;: average amount of commodities of type m € M stored in port j €
J UK at time period t € 7 under scenario group vy

o Ungty: average amount of commodities of type m € M shortage in market
g € G at time period t € 7 under scenario group 7y
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Utilizing these new variables and parameters, the following set of constraints

are formulated and accordingly added to the master problem [M-LIPM].

Y Xuijey + ) Xmigty
jed; g€G;
Z Xmijt"y + (1 - lxm)Hmj,t—l,o

IGI]‘

L2 Y ) Xuwswjits

beBseS neNj jeJi

Z Xmigt’? + Z kagt’? + umgt’?

i€Zy kekg
> Hujis
meM

Z mesnjkt’?
nG./\f]-k

(mesnjkt'7 )
Pm

LY X Y ), Xuswis

meMbeBseS neNj kek;

Z Z kagW

meM gegGy

LY ) Y ) Xuvenjug

meMbeBseS neNy kek

X )

neNy kek;

Z Z Xinkgty

meM geg

<

IN

IN

IN

IN

IN

PmityVm e M,i€e Lt €T (3.80)
Z Z Z Z mesnjkt*? +Hmjt7

beBseS neNj kek;

Vme M,je J,teT (3.81)

Z kagt"y + Hmkt'? - (1 -
g€k

‘Xm)Hmk,t—l,fy

Vme Mke K, teT (3.82)
dmgtVm e M,g € G, t €T (3.83)
hvje UK, teT (3.84)

min{wjkt,y,wb}YmijNm eM,beB,seS,

jeJ kekK,teT (3.85)
OpYmpsjtVm € M, b € B,seS,
jedg,teT (3.86)
GiVie T teT (3.87)
cuVke KC,teT (3.88)
R REL N2
(i)a + (L) ¢ (3.89)
p1\p ) It [ Jt :
(1+Rjt7) 1+ Rjs
Vie J,teT,p P
Wity _ lezi 2
(1+ W) 1+ Wi
Vke Kt e T,preP? (3.90)
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Wiy € RY'WkeK,teT (391)
Ry € RVjeJ,teT (392

Xmigt’?r ijkbsnt’?r kagt"yr Hmjt’?r Hmkt'?r umgﬁ’? € R (393)

Type B mean value cut is then given by the following;:

97 > Z ( Z CmeftXmeft"y + Z Cmithmigt'7 +
teT \e,f)e(ZUK,TUG) (i.8)€(Z,9)
Y ) ) Y CositXmbsnjiry + Y MmitHumjiy + Y gt Unmgty
beBseS neNy (jk)e(T K) jeJuUK 8€g
T iR+ L Wi ) (399
jeJ kek

3.4.3.6 Local Branching

The earlier iterations of the L-shaped algorithm still experience slow conver-
gence i.e., the gap between the upper and lower bound drops slowly even after
the addition of all proposed cuts. To address this issue, the local branching proce-
dure is adopted. This procedure was first developed by Fischetti and Lodi [41].
Later, Rei et al. (2009) [116] first demonstrated the utilization of this procedure un-
der the classical Benders decomposition framework. Following this procedure, the
feasible region is divided into a series of smaller subproblems which can be solved
by any generic solver (e.g., GUROBI, CPLEX) within an acceptable time limit. The
procedure begins with a feasible solution Y of [M-LIMP] that serves as a reference

point to create local branching subproblems. Let k, be a positive integer parameter.
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Considering Y' be an optimal solution of the master problem [M-LIMP], the fea-

sible region of [M-LIMP] is divided into the following two reduced subproblems.
AY, YY) <ky vV AYY) >k, +1 (3.95)

The reduced subproblem is then solved by adding the left branching constraint pre-
sented in the first part of constraint (3.95). After solving the local branching sub-
problem, depending on the status of the optimizer, one of the four cases, (i) op-
timality, (ii) infeasibility , (iii) suboptimality, and (iv) exceeding timelimit, might
arise. If the first case (i) arises, the left branching constraint is replaced by the right
branching constraint i.e., A(Y, Yl) > ky + 1, and the reference point is updated
with the new solution. In case (ii), the left branching constraint is replaced by the
right branching constraint i.e., A(Y, Y)>k,+1anda diversification procedure is
applied by increasing the size of the feasible region by [k, /2] i.e., (ky + [ko/2]).
Upon occurance of case (iii), we eliminate the left branching constraint, and add
a tabu constraint A(Y, Yz) > 1 where, Y is the new reference point from the last
subproblem. Then, a new subproblem is generated and solved by adding the left
branching constraint A(Y, Y?) < k,. In case (iv), we decrease the right hand size of
the left branching constraint by one, and add tabu cut to eliminate Y from further
consideration. The current subproblem is then solved for finding a better solution.
If not found, the diversification procedure is repeated to enlarge the size of the

teasible region.
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3.4.4 Implementing Parallel Processing;:

The proposed algorithmic framework utilizes constraint generation (CG), sam-
ple average approximation (SAA), and the L-shaped algorithm in a nested struc-
ture along with a number of enhancement techniques introduced in section 3.4.3.
To enhance the performance of this nested hybrid decomposition algorithm and to
accelerate the solution process, we develop two different parallelization schemes
based on parallel computing concept. In contrast with the conventional techniques
where the subproblems of the algorithms under investigation could be solved
in series, we develop a parallelization framework, utilizing the multiprocessing
capabilities of the computers, to solve our proposed hybrid decomposition algo-
rithm in parallel. Essentially, two parallelization schemes are developed which are

discussed in details below.

(i) Scheme 1: The first scheme applies synchronous parallelization technique
under SAA algorithm. In each iteration, SAA generates |E| replications of
problem [LIPM(SAA)]. Following this scheme, each of these replications
are routed to different available processors and solved in parallel utilizing
the enhanced L shaped algorithm. Note that the L-shaped algorithm solves
the master problem [M-LIPM] and scenario-based subproblems [S-LIPM(o)]
that are the relaxed version of the equivalent formulation of [LIPM(SAA)].
After all the replications are solved, the solutions are aggregated and the con-
vergence of the SAA algorithm is checked. If the obtained gap is lower than
the predefined threshold limit, then the SAA algorithm is terminated; other-
wise, more SAA replications are generated and the process continues. Given
that the SAA algorithm is converged in any iteration, we first calculate the
upper bound of the CG algorithm and then check the convergence of the CG
algorithm. If the CG algorithm provides solution of the desired quality, we

stop the algorithm. Otherwise, we generate new points {R]”t‘if)“} and {W/SY
and continue the process. The flow chart for this parallelization scheme can

be seen in Figure 3.2.

(ii)) Scheme 2: The second parallelization scheme applies synchronous paral-
lelization technique under the L-shaped algorithm introduced in section 3.4.3.
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In each iteration r of the L-shaped algorithm, a master problem [M-LIPM]
and a series of scenario-based subproblems [S-LIPM(o)] are solved. Follow-
ing this scheme, each of these scenario-based subproblems are dynamically
distributed to different available processors which are finally collected and
aggregated upon solution. These aggregated solutions are then utilized to
generate optimality cut (3.42) and apply different enhancement techniques
discussed in section 3.4.3. Upon satisfaction of convergence requirements of
the L-shaped algorithm, the next replication of the SAA algorithm (i.e., prob-
lem [LIPM(SAA)]) is solved following the same procedure. The process is
continued until all replications of any particular iteration of the SAA algo-
rithm are solved with desired quality. If such a quality is found, the current
solution is used to calculate the upper bound of the outer loop (i.e., CG algo-
rithm) of the proposed algorithm. We then check the convergence of the CG

algorithm and generate new points ({R777} and {W'}) if the convergence

is not at desired level. The loop repeats until the CG algorithm provides a
solution of the desired quality. The flow chart for this parallelization scheme
can be seen in Figure 3.3.

3.5 Experimental Results

This section presents a real-life case study on model [IPM] that illustrates the
performance of the proposed hybrid nested decomposition algorithm and to draw
important managerial insights. The model and solution algorithms are coded in
python 2.7 on a desktop computer with Intel Core i7 3.6 GHz processor and 32.0
GB RAM. Optimization solver Gurobi Optimizer 6.5 is used to solve the proposed
mathematical model. Four states from the Southeast region of the United States,
namely, Arkansas (AR), Louisiana (LA), Mississippi (MS), and Tennessee (TN) are

selected as a testing ground to visualize and validate the modeling results. All

2 Available from: http://www.gurobi .com/
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costs are calculated based on 2018 dollars value. In following subsections, we
briefly describe the input parameters used in this study, present the performance
of the proposed solution algorithms, and summarize the managerial insights ob-

tained from the experimental study.

3.5.1 Data Description

Inland Waterway Port Location: In this study we consider a total of thirteen
inland waterway ports along the Mississippi River. The geographical locations
of these selected ports are shown in Figure 3.4. Among these thirteen ports, five
ports, namely, the Port of Rosedale, Greenville, Vicksburg, Natchez, and the Ya-
zoo County, are located in Mississippi. The first four of them are located alongside
the Mississippi River, whereas the Port of Yazoo County stands along a stream
flowing from the Mississippi River. The Port of Claiborne County is operationally
unavialble [85]; therefore, we have excluded this port from further consideration.
Besides, we consider few ports from Louisiana (e.g., the Port of Geismar Louisiana,
Greater Baton Rouge, South Louisiana, and Gramercy) and Tennessee (e.g., the
Port of Memphis, Pemiscot County, and New Madrid County), and the Port of
Little Rock from Arkansas to construct the case study. All of these ports are di-

rectly connected with each other via the Mississippi River.
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County Border

Figure 3.4

Inland waterway port locations along the Mississippi River
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Supply Data: This case study considers four commodities to be transported
from their supply sites to demand locations via the transportation network under
consideration. These selected commodities are rice, corn, woodchips, and fertil-
izer. The annual supply distribution (in 1,000 tons) of these four commodities
in the test region can be seen in Figure 3.5. Suppliers located within a radius of
60 miles from the selected ports are only considered for the study. Among the
selected commodities the first two, rice and corn, are highly seasonal in nature.
These commodities are not available throughout the year. More specifically, rice
is available only between August and October of each year whereas the harvest-
ing period of corn starts from mid-July and ends by early December of each year
[133]. The avaibality of woodchips remain fairly stable throughout the year except
three months during the winter (December to February) [133]. Fertilizer is avail-
able throughout the year. The test region produces 6.3 and 113.8 million tons of
rice and corn per year from 42 and 59 different counties, respectively [135]. On the
other hand, 8.3 and 0.4 million tons of woodchips and fertilizer are supplied from

31 and 22 different counties, respectively [136, 137].

Demand Data: In this study a total of 43 industries in Mississippi are consid-
ered as demand points for the selected commodities. These facilities are located
near to any of the inland waterway ports under consideration. The annual de-
mand for these commodities are set as 3.8, 68.3, 8.3, and 0.37 million tons of rice,

corn, woodchips, and fertilizer, respectively [135, 137]. The location and distribu-
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test region (in 1,000 tons)
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tion of demand points for all the four commodities in Mississippi are presented in

Figure 3.6.

Transportation Costs: This study considers two transportation modes: trucks and
barges for transporting commodities from their sources to destinations. Our study
assumes that trucks will be used to transport commodities between supply sites
i € 7 to origin ports j € J and destination ports k € K to markets ¢ € G. Ad-
ditionally, trucks are also considered as useful alternatives to perform direct com-
modity transportation between supply sites i € Z and markets ¢ € G. A semi
truck with 25 tons of load capacity can be used to serve this purpose. The fixed
cost (e.g., loading and unloading cost) and variable cost (e.g., fuel cost) associated
with using any of such trucks can be $5/ton and $1.20/mile/truckload, respec-
tively [36]. On the other hand, origin ports j € J and destination ports k € K
are the two available set of points between which waterway transportation is pri-
marily conducted with the association of barges and towboats. The capacity of
towboats are considered as a maximum (&s) of 15 barges while utilizing towboats
incur a fixed loading and unloading cost () of $244.38 [138]. The barges are con-
sidered having a maximum design capacity (w;) of 1,500 tons each [138]. Barge

usage cost is set as $0.017/mile/ton, adopted from a study of Gonzales et al. [48].

Waterlevel Fluctuations: Waterlevel fluctuation is one of the most prominent prob-

lem typically experiences by the inland waterway transportation system. Differ-
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ent waterbodies all over the world (e.g., Yangtze River at China [94], Rhine River
at Europe [94], Tagliamento River at Europe [131], and many others) experience
this unavoidable phenomenon in different time period of the year. The Missis-
sippi River also experiences significant waterlevel fluctuations in different time
period of a year which seriously impact the inland waterway port operations. For
instance, the lower Mississippi River possess better flow compared to the upper
Mississippi River; therefore, the load carrying capacity of this segment of the river
is more sound and reliable compared to the upper Mississippi River. On the other
hand, it is evident from the historical records that the waterlevel of this portion
of river experiences significant variations year round that impacts the barge traffic
flowing through this waterway. Often this fluctuation becomes extremely signif-
icant even in different weeks on the same month. A demonstration of waterlevel
fluctuations between Port of Rosedale and Port of Greenville from July, 2016 to
June, 2017 is provided in Figure 3.7 [139]. Each data point in Figure 3.7 shows
the water stage® variation (e.g., minimum, maximum, and average waterlevel) per
week as reported by the US Army Corps of Engineers [139]. We can notice from
the figure that between the middle of August and end of December of a calender
year, the waterlevel drops become more prominent, showing the maximum dur-
ing the first three weeks of October (week 14-16 in Figure 3.7). Other than these

specific periods, the water stage generally remains above the desired level of 14.2

3Water stage is a popular measure of waterlevel in a river stream with respect to a reference
height
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feet for other time periods, except in May when the level reaches to 42 feet, which

is higher than the flood level (37 feet) [139].
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Figure 3.7

Demonstration waterlevel fluctuations between Port of Rosedale and Port of

Greenville from July, 2016 to June, 2017 [139]

3.5.2 Real-life Case Study

This subsection illustrates how the proposed model and solution approaches can
be used to derive important managerial insights from solving a real-world prob-
lem. In order to show the impact of different key input parameters, a number of

experiments are conducted. This section provides a comprehensive summary of

the experimental results.
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The first set of experiments examine the impact of water level fluctuation (W )
on overall system performance. Depending on the observations in Figure 3.7, we
generate four different waterlevel scenarios considering +20% and +40% changes
in base mean waterlevel (@i, fluctuations. Figure 3.8 summarizes the key results
of this experiment. Note that in Figure 3.8 and the following figures, t = 1 stands
for a representative week of month July, and the following 11 months are repre-
sented in ascending order ending at ¢t = 12 which is a representative week of June.
Figure 3.8(a) shows that with 20% and 40% increase in mean Wik, barge selec-
tion (Y;upsjt) drops by 8.48% and 24.14%, respectively, from the base case scenario.
On the other hand, a 20% and 40% reduction in mean wj,, cause barges to carry
less load from their design capacity which in turn rises Y;,s;; selection by 13.25%
and 25.33%, respectively, from the base case scenario. The peak barge usage is ob-
served in the month of October (t = 3) when the waterlevel drop is most severe.
Additionally, Figure 3.8(b) shows that the barge to towboat ratio (Y;psjt / Ysujke) in-
creases with a mean reduction in Wi, To be specific, with 40% drop in Wik,
this ratio reaches to a maximum of 15 barges per towboat (see t = 2 to 5 in Figure
3.8(D)). As evident from Figure 3.7 that the waterlevel drop is not significant be-
tween January to July. Therefore, we do not observe any significant deviations in
transportation decisions for those time periods, as can be seen even for 20% and
40% increment on Wi, in Figures 3.8(a) and (b). To magnify the impact of con-
gestion under different W, scenarios, few additional experiments are conducted

by considering and ignoring the congestion terms in model [IPM]. As observed
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in Figures 3.8(c) and (d), the system could utilize an additional 21.89% and 10.5%
barges even in the worst (-40% change in Wjk,) and best (+40% change in Wjk,)
waterlevel scenarios, respectively, if the congestion terms are dropped from model
[IPM]. Further, it is realized that the barges are now required to adjust their weight
carrying capacities according to the waterlevel conditions as illustrated in Figure
3.8(d).

The next set of experiments study the impact of system performance under
different commodity supply ¢t scenarios. To run these experiments, we create
different instances by changing the mean supply (¢,,;,) by £25% and £50% from
the base supply. Figure 3.9 illustrates the impact of ¢,,;, changes in barge (Y;usjt)
and towboat (Yspjxs) selection. With 25% and 50% increase in ¢, it is observed
that the Y5 and Y, selections are increased by 11.21% and 4.42%, respec-
tively, from the base case scenario. Further, when ¢, ., is changed by -25%/-50%,
Yinpsjt and Yy, jx; decisions are accordingly changed by -6.7%/-15.3% and -12.05%/-
15.1%, respectively, from the base case. This indicates that the selection of Y;sjs
and Y, jx; decisions are highly sensitive to supply availability.

The system performance is further inspected by considering and ignoring con-
gestion (e.g., c;-’t = 0;Vj € JUK,t € T) under ¢,; changes. Moreover, to ap-
propriately capture these cases, we create two timeframes, namely, peak and low
impact season, when the supply availabilities are respectively high and low. Due
to the harvesting seasons of many agricultural products (e.g., corn, rice), we select

September to November as the peak season and other months of the year as low
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impact season. Figure 3.10 demonstrates the impact of ¢, ;, changes on overall sys-
tem performance with and without considering the congestion cost. Note that in
Figure 3.10, we denote Ymbsjt and Umgtw to be the average number of barges used
and unsatisfied demand over the peak and low impact seasons. It is observed
that compared to the base case 37.7% additional barges are now required to be
used during the peak season if the congestion effect could be ignored. The impact
is even more significant when ¢, ., continue to be increased (see Figure 3.10(b)).
However, this number drops down to only 4.3% for the low impact season as can be
seen in Figure 3.10(a). Figure 3.10(c) further illustrates the impact of congestion
on ?mbs]’t and Umgtw decisions. More specifically, we observe that Umgtw drops
with an increase in ¢,,;, quantity. However, this drop can be as much as approxi-
mately 49.4% if the congestion terms are ignored in model [IPM]. To summarize, it
can be observed that congestion significantly restricts the commodity transporta-
tion under all supply scenarios; therefore, additional capacity enhancements on
waterways and ports might provide long term benefits in minimizing its effect

and retain sound commodity transportation.

3.5.3 Performance Evaluation of the Algorithms

This section presents our computational experiences in solving model [LIPM] us-
ing the algorithms presented in Section 3.4. To test the performance of the solution
algorithms, we first vary |Z|, | 7|, |K|,|G|, and | Q)] to generate 9 different problem

instances. These instances are summarized in Table 3.1. We use the following cri-
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teria to terminate the algorithms: (i) the optimality gap (i.e., € = |UB — LB|/UB)
falls below a threshold value (e.g., € = 1.0%); (ii) the maximum time limit (#"*¥)

is reached (e.g., t"* = 10,800 CPU seconds); or (iii) the maximum iteration

max

limit (q""*) is reached (e.g., ¢"""* = 100). To help readers follow our solution ap-

proaches, the following notations are used to represent each particular variants of

the proposed algorithms.

e CG: Constraint Generation Algorithm.

o CG+SAA: Hybrid algorithm combining Constraint Generation Algorithm
and Sample Average Approximation discussed in Sections 3.4.1 and 3.4.2.

o CG+SAA+L: Hybrid decomposition algorithm combining Constraint Gener-
ation Algorithm, Sample Average Approximation, and L-shaped algorithm
discussed in Sections 3.4.1-3.4.3.

e CF-I: Hybrid decomposition algorithm combining Constraint Generation Al-
gorithm, Sample Average Approximation, and L-shaped algorithm with en-
hancements discussed in Sections 3.4.3.1-3.4.3.3, 3.4.3.6, and Type A Mean-
value cut.

e CF-II: Hybrid decomposition algorithm combining Constraint Generation
Algorithm, Sample Average Approximation, and L-shaped algorithm with
enhancements discussed in Sections 3.4.3.1-3.4.3.4, 3.4.3.6, and Type B Mean-
value cut.

e PS-I: Parallelization scheme I discussed in Section 3.4.4.

e PS-II: Parallelization scheme II discussed in Section 3.4.4.

o CF-I + PS-I: Parallelization scheme I is applied over hybrid algorithm CF-I.
o CF-I + PS-II: Parallelization scheme Il is applied over hybrid algorithm CF-I.
o CF-II + PS-I: Parallelization scheme I is applied over hybrid algorithm CF-II.

o CF-II + PS-II: Parallelization scheme Il is applied over hybrid algorithm CF-
II.
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The first set of experiments study the impact of different variants of the pro-
posed algorithms discussed in Section 3.4 without parallelization i.e., approaches
CG, CG+SAA, CG+SAA+L, CF-I, and CF-II, respectively. Table 3.2 summarizes
the computational results obtained from this set of experiments. Note that in re-
porting the computational results in Table 3.2 and as well as in the following ta-
bles, we highlight the algorithm which produces the smallest running time given
all the instances are solved by other algorithms under investigation within the pre-
specified optimality gap. However, if such a quality solution is not found within
the maximum time or iteration limit, then the algorithm with the smallest opti-
mality gap is highlighted. We now summarizes the key observations from Table
3.2 below:

e Results in Table 3.2 indicate that the basic CG algorithm is only able to
solve 1 out of 9 problem instances within the pre-specified termination cri-
teria. For the remaining instances (instances 2-9), Gurobi gets out of memory
(OOM) in solving model [LIPM]. The computation performance improves
slightly when SAA algorithm is integrated with the CG algorithm, namely,
the CG+SAA algorithm. With this hybrid technique, we now can able to
solve an additional instance (instance 2) within the pre-specified termina-
tion criteria, but the status of 5 out of 9 problem instances still remain out
of memory. We further observe a slight improvement in computational per-
formances when L-shaped algorithm is incorporated with the CG+SAA al-
gorithm, namely, the CG+SAA+L algorithm. With this incorporation, 3 out
of 9 instances are now solvable within the pre-specified termination crite-
ria while, most importantly, none of the instances get out of memory even
though leaving with a high optimality gap within the time limit.

e Additional experiments are then conducted to examine how different accel-
erated techniques in the L-shaped algorithm enhance the computational per-
formances of the CG+SAA+L algorithm, namely, the CF-I and CF-II algo-
rithms. Results in Table 3.2 further indicate that on average CF-I and CF-II
algorithms save 5.35% and 12.54% computational time, respectively, over the
CG+SAA+L algorithm. Additionally, the average optimality gap of the CF-
I and CF-II algorithms now drop down to 6.04% and 4.51%, respectively,
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from 16.99% as reported by the CG+SAA+L algorithm. Note that the differ-
ence between CF-I and CF-II algorithms is the incorporation of the scenario
bundling technique as discussed in section 3.4.3.4. To summarize, algorithm
CF-II demonstrates high computational performance over CF-II but leaves
with high optimality gap in solving problem [LIPM] within the pre-specified
time limit.

Table 3.2

Experimental result for all cuts presented in section

Instance CG CG+SAA CG+SAA+L CF-1 CF-II

No. t(sec) €(%) q t(sec) €(%) q t(sec) €(%) g t(sec) €(%) g  t(sec) (%) q

1 5,219 099 1 4,788 075 2 4,321 043 2 3,370 0.06 2 3,236 002 2
2 OOM 7,150 088 2 3,386 052 1 5418 005 2 4,767 013 2
3 OOM 10,800 424 3 9,345 033 2 6,516 011 2 5473 009 2
4 OOM 10,800 2598 2 10,800 2412 1 8,167 097 1 699 073 1
5 OOM OOM 10,800 23.12 1 10,800 811 2 7913 087 1
6 OOM OOM 10,800 2493 1 10,800 712 2 10,800 564 2
7 OOM OOM 10,800 2712 1 10,800 8.07 2 10,800 612 2
8 OOM OOM 10,800 2542 1 10,800 1042 1 10,800 1154 1
9 OOM OOM 10,800 2692 1 10800 1942 1 10,800 1019 1

Average 5,219 099 1 8,385 796 2 9,095 1699 1 8,608 6.04 2 7,954 451 2

OOM: out of memory

Realizing from the results in Table 3.2 that even though algorithms CF-I and
CF-II demonstrate high potential, on average 50% instances still remain unsolved
within the pre-specified time limit. Hence, we employ different parallelization
techniques, namely, the PS-I and PS-II algorithms, to further improve the compu-

tational performances of the CF-I and CF-II algorithms. The results are reported in
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Tables 3.3 and 3.4, respectively. The key findings from these computational results
are summarized below:

e As evidenced from the results in Table 3.3 that the incorporation of Paral-
lelization scheme I (PS-I algorithm) in CF-I algorithm, namely, the CF-I+PS-I
algorithm, significantly drops the optimality gap and running time of the ba-
sic CF-I algorithm. On average, we observe a drop in running time by 52.9%
while producing an optimality gap of 0.36% by CF-I+PS-I over the CF-I al-
gorithm. Most importantly, algorithm CF-I+PS-I is now capable of solving
all the problem instances reported in Table 4.1 by obeying the pre-specified
termination criteria. Note that even though the incorporation of Paralleliza-
tion scheme II (PS-II algorithm) in CF-I algorithm, namely, the CF-1+PS-II
algorithm, slightly improves the computation performances (both in running
time and optimality gap) of the basic CF-I algorithm, 4 out of 9 instances still
left with high optimality gap.

e Similar observations can also be made with the CF-II algorithm (shown in
Table 3.4) when both Parallelization schemes I and II are incorporated with
the CF-II algorithm, namely, the CF-II+PS-I and CF-II+PS-II algorithms.
Yet again we observe that algorithm CEF-II+PS-I is capable of solving all
the problem instances reported in Table 3.1 in less than 1% optimality gap
while solving problem [LIPM] approximately twice faster than the CF-II al-
gorithm. On the other hand, the CF-II+PS-II algorithm, even though drops
the average optimality gap of the CF-II algorithm from 4.15% to 2.43%, still
unable to solve 4 out of 9 problem instances by obeying the pre-specified
termination criteria.

e Our final observations can be made between the CF-I+PS-I and CF-II+PS-I
algorithms where it is evident from the results in Tables 3.3 and 3.4 that CF-
II+PS-I slightly outperforms CF-I+PS-I with respect to both running time
and optimality gap produced by the algorithms. Even though both CF-1+PS-
I and CF-II+PS-I algorithms are now capable of solving all the problem in-
stances reported in Table 3.1 in less than 1% optimality gap, algorithm CF-
II+PS-I saves an additional 8.8% running time in solving problem [LIPM]
while producing the optimality gaps reported by Tables 3.3 and 3.4, respec-
tively. To summarize, algorithm CF-II+PS-I seems to offer high quality solu-
tions consistently within our tested experimental range.
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Table 3.3

Experimental results for CF-I under different parallelization schemes

Instance CF-1 CF-1+PS-1 CF-1+PS-I1

No. t(sec) €(%) g t(sec) €(%) q t(sec) €(%) gq

1 3370 0.06 2 927 003 2 2759 006 2
2 5418 0.05 2 1449 008 2 4851 039 2
3 6,516 011 2 1,873 042 2 5,697 042 2
4 8,167 098 1 2287 016 1 7292 006 1
5 10,800 812 2 4,631 010 2 8942 080 1
6 10,800 712 2 6,153 056 2 10,800 322 2

7 10,800 808 2 4123 049 1 10,800 3.89 2
8 10,800 1043 1 9,071 050 2 10,800 1453 1

9 10,800 1943 1 10,214 087 2 10,800 17.65 1

Average 8608 6.04 2 4550 036 2 8082 456 2
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Table 3.4

Experimental results for CF-II under different parallelization schemes

Instance CF-11 CF-1I+PS-1 CF-1I+PS-I1

No. t(sec) €(%) gq t(sec) €(%) g t(sec) €(%) q

1 3236 0.02 2 895 011 2 2515 0.03 2
2 4,767 014 2 1,289 020 2 4,107 006 2
3 5473 0.09 2 1607 026 2 4752 027 2
4 69% 074 1 1995 012 1 5894 016 1
5 7913 087 1 3279 022 1 6,589 030 1
6 10,800 565 2 5817 044 2 10,800 4.19 2

7 10,800 812 2 3998 027 1 10,800 371 2
8 10,800 1155 1 8469 030 2 10,800 553 1

9 10,800 1020 1 9979 038 2 10,800 7.65 1

Average 7954 415 2 4148 026 2 7451 243 2
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3.6 Conclusion and Future Research Directions

This paper proposes a two-stage stochastic non-linear programming model to
design and manage an inland waterway transportation-based logistics network
while stochastic nature of commodity supply and water-level fluctuations are taken
into consideration. The model is designed to jointly optimize trip-wise towboat
and barge assignment decisions and different supply chain decisions (e.g., inven-
tory management, transportation decisions) in such a way that the congestion as
well as the overall system cost can be minimized under uncertainty. We present a
parallelized hybrid nested decomposition algorithm to solve our proposed model.
Results indicate that the presented parallelization schemes with hybrid nested de-
composition algorithm can efficiently solve our proposed optimization model in
a timely manner. We utilize few Southeast US States as a testbed to visualize and
validate the modeling results. A number of managerial insights, including the im-
pact of uncertain water level fluctuation and supply, and port congestion on the
inland waterway transportation network, are drawn from the case study.

To summarize, the major contributions of this study include: (i) proposing
a multi-commodity, multi-time period two-stage stochastic non-linear program-
ming model that not only optimizes the inland waterway port operations but
also minimizes the overall system cost considering the impacts of congestion un-
der supply uncertainty; (ii) presenting and testing an efficient hybrid nested de-
composition algorithm combining Constraint Generation Algorithm, Sample Av-

erage Approximation, and an enhanced L-shaped Algorithm to solve realistic-size
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network design problems; (iii) developing and testing different parallelization
schemes to parallelize the proposed nested decomposition algorithm; and (iv)
drawing managerial insights from a real-life case study. Note that the proposed
methodologies can be adopted to efficiently solve different stochastic optimization
problems. Further, the managerial insights obtained from this study may help de-
cision makers to design and manage a cost-efficient inland waterway-based sup-
ply chain network under uncertainty.

This study can be extended in several research directions. First, it would be in-
teresting to see how the detailed consideration of barge and tow routing, schedul-
ing, and re-positioning issues impact the inland waterway port operations. Next,
the impacts of port operations under both natural (e.g., hurricane, tornado) and /or
human-induced (e.g., cyber attack) disruptions also need to be investigated. These

issues will be addressed in future studies.
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CHAPTER 4
SOLVING A STOCHASTIC INLAND WATERWAY PORT MANAGEMENT
PROBLEM USING A PARALLELIZED HYBRID DECOMPOSITION

ALGORITHM

4.1 Introduction

Inland waterway ports are indispensable components of a nation’s overall trans-
portation system and to the economy. In the U.S., the annual GDP (Gross Domestic
Product) contribution of these ports are approximately 15 billion dollars while cre-
ating more than 250,000 annual employment opportunities from this transporta-
tion sector [89]. Apart from these benefits, inland waterway ports greatly con-
tribute to a nation’s rural industrial and agricultural development [84]. However,
despite of their substantial potentiality, this segment of transportation system is
frequently impacted by many factors that hurts its productivity, including but not
limited to high water level fluctuations, congestion, aging infrastructure, delays
caused by scheduled and unscheduled closures of locks (primarily due to mainte-
nance activities), and many others [140]. For instance, in the early 2011, a severe
flood affected the inland waterway system of the U.S., causing a total damage of
approximately $8.5 billions. However, in the very next year, waterways experi-

enced severe drought causing a number of barges to run aground [140]. Consider-

159

www.manaraa.com



ing the severity and frequency of this vital inland waterway-specific issue and the
long term sustainment of this transportation sector, developing reliable optimiza-
tion models that account for different factors which frequently impact the inland
waterway port operations (e.g., waterway fluctuations, commodity supply fluctu-
ations, barge/towboat maintenance and availability, delays in locks) are of utmost
importance.

Inland waterway transportation holds some distinctive properties which makes
it different from the seaports. To mention a few, these ports generally handle barge
traffic drafting up to 9 feet only, are located primarily near smaller bodies of water
(e.g., rivers and canals), usually land intensive, and/or handle smaller counts of
larger users and a large number of smaller users [84]. Additionally, the water level
at the port channels and any part of the waterway, connecting two inland water-
way ports, undergo severe fluctuations in different time periods of the year [139].
Depending on the severity of this fluctuation, these ports, including the waterway
itself, often experience disruptions, such as drought and flood that may tremen-
dously impact or even cease the port operations for a prolonged period of time.
Further, these ports commute heavy volume of highly seasonal and perishable
commodities (e.g., rice, corn, woodchips, soybean). The seasonality of the com-
modities coupled with time varying waterway conditions excessively delay the
port operations, which directly impacts the operational planning of the ports un-
der consideration. All these prevalent challenges restrict the optimization models

available in the literature for the maritime transportation to be directly applicable
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for the inland waterway ports. Therefore, in order to ensure long term sustain-
ment of the inland waterway ports, sophisticated optimization models need to be
developed that best capture the unique characteristics of this cost efficient, reliable,
and environmentally-friendly transportation sector.

Among different variants of the waterway port-specific problems, a number
of research develops optimization models to address diversified seaport-related
problems, such as ship routing and scheduling [29], inventory routing [5], berth
allocation and scheduling [141], empty container re-positioning [43], sailing speed
optimization [141], bunker consumption [145], emission consideration [141], dis-
ruption [126, 56], port delays [148], and many others. Few researchers attempted
to develop simulation models to address those similar problems (e.g., [125, 44]).
Even though deep penetration to seaport research is observed, inland waterway
ports did not receive much attention from the research community. A few studies
has been carried out that characterize and model the specifics of deep draft inland
ports, capable of handling container cargos and ships; however, almost no research
has been conducted to date that puts specific considerations to model shallow draft
inland ports'. Realizing their significance on the overall transportation system and
economy, better understanding of the shallow draft inland waterway ports is im-
perative in order to successfully design and manage a sound and efficient inland

waterway transportation network.

IThe ports that are unable to handle barges/vessels drafting more than 9 feet are known as
shallow draft inland ports. Deep draft inland ports, on the other hand, are the ones that can handle
barges/vessels drafting more than 9 feet.
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To fill this research gap, this study proposes a mathematical model that real-
istically captures different inland waterway port-related issues (e.g., water level
fluctuations, barge/towboat assignments and availabilities, weight and volumet-
ric capacity restrictions of barges, product mix restrictions, storage restrictions)
under a same decision making framework and illustrates their impacts on design-
ing and managing an inland waterway transportation network. More specifically,
we propose a capacitated, multi-commodity, multi-period, two-stage stochastic
mixed-integer linear programming model that jointly optimizes trip-wise barge
and towboat assignment decisions along with different crucial supply chain deci-
sions (e.g., inventory management, transportation decisions) with a goal of min-
imizing the overall system cost under water level and commodity supply uncer-
tainty.

The proposed mathematical model is an extension of a fixed charged, uncapac-
itated network flow problem, which is already known to be an N'P-hard prob-
lem [74]. To alleviate this challenge and to obtain solutions within a limited com-
putational time, we develop a highly customized parallelized hybrid decomposi-
tion algorithm which combines Sample Average Approximation with an enhanced
Progressive Hedging (PH) and Nested Decomposition (ND) algorithm. Several
techniques are used to enhance the PH algorithm, such as penalty parameter up-
dating, global and local heuristics, and scenario bundling techniques. On the other
hand, techniques, such as problem-specific valid inequalities, strengthened Ben-

ders and Lagrangian cuts, are used to enhance the performance of the ND algo-
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rithm. To the end, two parallelization schemes are proposed to parallelize the
entire hybrid decomposition algorithm. Extensive computational experiments are
presented to demonstrate how the parallelized hybrid decomposition algorithm
effectively and efficiently solves the proposed mathematical model.

Apart from proposing the mathematical model and solution approaches, we
demonstrate a real-life application by utilizing the inland waterway transportation
network along the lower Mississippi River. The outcome of this study provides a
number of managerial insights, such as the impact of water level fluctuations on
towboat and barge selection and commodity supply fluctuations on overall system
performance, which may effectively aid decision makers to design a cost-efficient
shallow draft inland waterway transportation network.

this paper is organized as follows. Section 4.2 provides a comprehensive re-
view of the related works and distinguish our work with the existing literature.
Section 4.3 discusses the problem and introduces the proposed mathematical model.
The decomposition algorithms used to solve our proposed model are outlined in
Section 4.4. Section 4.5 presents a real life case study and discusses the compu-
tational performances of the proposed algorithms. Finally, Section 4.6 concludes

this study and discusses future research directions.

4.2 Literature Review

Deep draft inland waterway ports have received tremendous attention from the

research community in the last years. Different researchers have studied several
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realistic aspects of the deep draft inland waterway ports, including barge and tow-
boat routing and repositioning problem, berth allocation, port disruption, delays
in locks and dams, and few others. This section provides a comprehensive review
on these specific research problems and distinguishes our work from the existing
literature.

Berth allocation problem is a common problem that typically experiences by
both seaports and inland waterway ports. To date, few researchers have attempted
to solve this problem for the deep draft inland waterway ports. For instance, Gru-
bivsic et al. [50] solve a berth layout design problem to minimize the overall vessel
waiting time. Depuy et al. [30] consider several factors, such as fleet location ca-
pacity, total volume of barges, and average handling time, to optimally allocate
barge volume to different fleet locations. Arango et al. [11] adopt a combined
simulation-optimization approach to solve a berth allocation problem.

In addition to this research challenge, another stream of research studies how
the performances of locks and dams impact the deep draft inland waterway trans-
portation network. For instance, Ting and Schonfeld [130] utilize a simulation-
optimization framework to decide how much capacity increment is required for
the locks so that the costs associated with tow delays can be minimized. Wang
and Schonfeld [147] also adopt a combined simulation-optimization approach to
schedule the investment decisions for lock reconstruction and rehabilitation. Most

recently, Tan et al. [127] propose an optimization model that jointly optimizes ship
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schedule and sailing speed for the deep draft inland shipping services under un-
certain dam transit time.

Another stream of research focuses on optimizing the barge routing and empty
container repositioning problem for the deep draft inland waterway ports. One
such study is conducted by Braekers et al. [20] where the authors optimize barge
routing and empty container repositioning between a sea port and few hinterland
ports. The extension of this work [19] includes vessel capacity and round trip
service frequency to the barge routing and empty container repositioning prob-
lem. Marass [76] proposes a mixed-integer linear programming (MILP) model to
optimize the transport routes of chartered container ships or tows for an inland
waterway port. Most recently, An et al. [9] formulate a mixed-integer nonlinear
programming (MINLP) model to solve an empty container repositioning shipping
network design problem.

Realizing that a port may fail either due to natural (e.g., hurricane, tornado)
or human-induced (e.g., cyber-attack) disaster, few studies focus on identifying
the resiliency of a deep draft inland waterway port. For instance, Baroud et al.
[13] convert different stochastic resilience-based component importance measures
into an optimization framework to determine the important waterway links and
the precedence of link recovery in case of a disaster. Oztanriseven and Nachtman
[102] develop a simulation-based approach to estimate the potential economic im-
pacts of inland waterways disruption response. The authors utilize McClellan-

Kerr Arkansas River navigation system as a testbed to visualize and validate the
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simulation results. Hosseini and Barker [59, 58] propose a Bayesian network to
model the infrastructure resilience of an inland waterway port. Other studies re-
lated to inland waterway ports include the consideration of port-specific economic
analysis [4], optimal dredging scheduling and investment decisions [113], the ef-
ticiency of inland waterway container terminals [152], tug scheduling between
seaport to inland ports [157], and carbon emission [155].

Different from the studies discussed above, our study captures different real-
istic shallow draft inland waterway port-related features (e.g., water level fluctu-
ation, delay in locks and dams, towboat and barge assignment decisions, barge
availability and maintenance) and magnifies their impact on the overall supply
chain system performance. Note that till now a number of existing studies in the
literature consider inland waterway ports as a medium of transportation while
designing a supply chain network, examples including but not limited to biomass
supply chain (e.g., [109]), coal supply chain (e.g., [35]), grain supply chain (e.g.,
[31]), and many other application areas. However, very few studies have captured
the true characteristics of the inland waterway transportation (e.g., water level
fluctuation, barge/towboat assignment decisions, barge availability and mainte-
nance) while solving a network designing problem. Our study captures one of
the most important and impactful features of the shallow waterway transporta-
tion network, water level fluctuation. Proper consideration of this issue can sig-
nificantly help obtain reliable tripwise commodity transportation decisions under

an extremely uncertain situation. Water level issues are well studied in maritime
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transportation [93, 24, 114]. However, in the case of inland waterway transporta-
tion, not much research attempts are observed that put specific focus on this issue.
Few studies discuss the impact of water level issue from an economic perspective,
such as [77, 100]. These studies investigate the impact of climate change and wa-
ter level on different economical factors of inland waterway transportation, such
as price per tonne transported, average annual shipping costs, average operating
costs, and freight prices per tonne, rather than considering the problem from a
real-life transportation network viewpoint. Hence, it is obvious that proper mod-
eling efforts, that capture different realistic features, need to be made in order to

design a reliable inland waterway transportation network.

4.3 Problem Description and Mathematical Model Formulation

This section presents a capacitated, multicommodity, multiperiod, two-stage
stochastic programming model formulation to efficiently design and manage an
inland waterway-based logistics network taking the stochastic, time-variant na-
ture of commodity supply and water-level fluctuations into account. The main
objective of the model is to optimize a number of inland waterway port-related
operational decisions (e.g., towboat and barge assignment, inventory, and com-
modity transportation decisions) under uncertainty and in such a way that the
overall system cost can be minimized. Figure 4.1 illustrates a simplified logistics

network consisting of two origin ports and three destination ports.
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Figure 4.1

[lustration of an inland waterway transportation network

Let us first denote a logistics network G = (N, A) where N be the set of
nodes and A be the set of arcs connecting the nodes within the logistics net-
work. Set N consists of a set of origin and destination inland waterway ports,
denoted by Z = {1,2,3,..,I} and J = {1,2,3,..., ]}, respectively. The network
requires to transport a set of commodities M = {1,2,3,..., M} through the two
origin and destination ports over a predetermined time periods, denoted by set
T = {1,2,3,..,T}. In order to handle the appropriate interconnections between
each origin and destination port, we introduce two subsets Z; and J; in our model.

The first subset Z; denotes the subset of origin ports connected to destination port
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j € J while the second subset J; denotes the subset of destination ports connected
to origin port i € Z. To handle different stochastic scenarios (e.g., commodity sup-
ply, water-level fluctuations), scenario set w € () is introduced where p,, defines
the probability of a given realization and p, > 0 and ) ,cn pw = 1.

Inland waterway ports handle a number of agricultural products which are
highly seasonal in nature, such as corn, rice, and woodchips. To exemplify, rice
becomes available only between August to October in a given calendar year. Like-
wise, corn is harvested between mid-July to late November of each year [133]. This
seasonality coupled with stochastic availability of agricultural products create a
serious challenge for decision makers to plan and manage the port operations. Let
us assume that the origin ports i € 7 are supplied with a stochastic amount of com-
modity ¢+, of type m € M at time period t € T under scenario w € (). Depend-
ing on the demand, these commodities need to be transported in different destina-
tion ports via an inland waterway transportation network, which utilizes an asso-
ciation of barges and towboats to carry these commodities. Let S = {1,2,3, ..., §}
be the set of towboats and B = {1, 2,3, ..., B} be the set of barges available to carry
commodities between any pair (i,j) € (Z,J) of the origin-destination ports. Set
S is arranged depending on the capabilities of the towboats such that towboat 1
in set S represents the least powerful towboat while S represents the most pow-
erful towboat. Based on the capabilities, we denote Js and J, to be the maximum

and minimum number of barges that can be carried out by any particular towboat

s € S. Let ¢ to denote the fixed cost associated with using a towboat s € S at
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time period t € 7. Further, loading and unloading commodity m € M in barge
b € B, having weight carrying capacity w;, and volumetric capacity v, at time pe-
riod t € T incurs a fixed cost of #7,,,;;. Let Cmpsijt to denote the unit transportation
cost of commodity m € M using barge b € B connected with towboat s € S along
arc (i,j) € (Z,J) attime period t € 7. Since the barges and towboats are required
to go through periodic maintenance, we capture these factors by introducing two
binary availability parameters a;;; and a;;, respectively.

Each port i € Z|JJ is assumed to carry inventory, restricted by maximum
commodity storage capacity of h;. The inventory holding cost for commodity
m € Minporti € T\JJ at time period t € T is denoted by h,,;;. We also
capture the deterioration rate of carrying commodity m € M between two con-
secutive time periods by introducing parameter «,,. The waterway depth at port
channel or throughout the waterbody may vary in different time period of the
year depending upon the amount of sediment, silt, or mud accumulated in the
waterbed. If such accumulation is too intense at any portion of the waterway
(e.g., near ports or between two connecting ports), it increases the height of the
waterbed which results in a decrease in the waterdepth. This waterdepth reduc-
tion can sometimes be too intense that it seriously impacts the transportation of
shallow draft water vessels through the waterway. Resultantly, the barges need to
carry commodities below to their designed weight carrying capacities, w;, to avoid
being stuck at any point of their navigational waterway. Let us define w;;,, and

Wi, to denote the maximum weight carrying capacity at port channeli € ZU J
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and w;jy, to be the allowable weight that can be carried through the waterway
between port pair (i,j) € (Z,J) at time period t € T under scenario w € Q.
Therefore, the maximum effective weight that a barge m € M can carry under this
restriction would be the minimum weight between the weight capacity near ori-
gin and destination ports, namely, wj;, and wj,, and the channel between each
origin-destination ports (i,j) € (Z,J), namely, Wijtw, i€, min{wiﬁw,wb} where
Wijtw = min{ Wi, Wijtw, w]'tw}. Considering the uncertainty associated with this
restriction, we consider Wy, to be a stochastic parameter in our proposed model
formulation. Finally, we assume that the commodity demand at destination ports,
denoted by d,,j;, can be satisfied either through the inland waterway transporta-
tion network or via an external source by paying a unit penalty cost of 77,,,j;. We
now summarize the following notations for our proposed mathematical model

formulation.

Sets:

e T: set of origin ports,i € Z

J: set of destination ports, j € J

M: set of commodities, m € M

S: set of towboats,s € S

B: set of barges, b € B

T set of time periods, t € T

T;: set of origin ports connected to destination port j, Vj € J

Ji: set of destination ports connected to origin porti, Vi € Z
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o (): set of possible scenarios w, Vw € ()

Parameters:

® Quitw: supply availability of product m € M in porti € T at time period
t € T under scenario w € ()

o | fixed cost of using towboat s € S at time period t € T

o upe: fixed cost for loading and unloading commodity m € M inbargeb € B
at time period t € T

® Cypsije unit cost of transporting commodity m € M along arc (i, ) € (Z,J)
using barge b € B of towboat s € S at time period t € T

e h;: commodity storage capacity at porti € Z|J J

e dji: demand for commodity of type m € M in port j € J at time period
teT

o ay;: deterioration of commodity m € M

® a1, Ap;;: binary availability of towboat and barge at porti € Z in time period
teT

e 55, 4;; maximum/minimum number of barges to carry by towboat s € S

e 03 capacity of the most powerful towboats € S

® Wjjt,: the minimum of {wjt,, Wijiw, Wjiw} Where wjy, and wjy,, indicate the
maximum weight carrying capacity at porti € Z|J J and wjj;, the allowable
weight that can be carried between the channel (i, j) € (Z, J) at time period
t € T under scenario w € (). The last weight (wjj1,) depends on the depth
of the waterway and should not exceed the minimal water-level between the
origin-destination ports

e oyt density of commodity m € M
e v;: volume capacity of barge b € B
e wy: weight capacity of abarge b € B

® Nyt unit inventory holding cost for commodity m € M inporti € Z|J J at
time period t € T

e 0;;: total number of barges available in port i € 7 at time period t € T
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e 7T,j¢: unit penalty cost of not satisfying demand for commodity m € M in
portj € J at time period t € T

® Yuir: procurement cost of commodity m € M in porti € Z at time period

teT
e t,t,: average loading and unloading time of a barge
e A: average delay in locks
e I;;: number of locks between origin port i € 7 and destination port j € J
e d;;: distance between origin port i € 7 and destination port j € J
e T average speed of towboat s € S at time period t € T

e t;;: allowable transport time limit between each origin port i € 7 to destina-
tion portj € J

p.w: probability of scenario w € ()

First Stage Decision Variables:

e Y 1if atowboats € Sis used in arc (i, /) € (Z,J) at time period t € T; 0
otherwise

® Yypsijr: 1 if commodity m € M is carried on barge b € B of towboats € §
from porti € Z to port j € Jat time period t € T; 0 otherwise

Second Stage Decision Variables:

® Zuitw: amount of commodities of type m € M processed at porti € 7 at
time period t € 7 under scenario w

® Xyupsijiw: amount of commodities of type m € M transported using barge
b € B of towboat s € S along arc (7,j) € (Z,J) at time period t € T under
scenario w € ()

e H, ity amount of commodities of type m € M stored in porti € Z|J J at
time period f € T under scenario w € ()

e Uty amount of commodities of type m € M shortage in destination port
j € J at time period t € 7 under scenario w € )
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We now introduce the following first- and second-stage decision variables for
our proposed two-stage stochastic programming model formulation. The first-
stage decision variables Y' := {Y;;|Vs € S,i € Z,j € J,,t € T} and Y* :=
{Youwsijt|Vm € M,b € B,s € S,i € ,j € J,t € T} determine which towboat to
use between an origin-destination pair in a given time period and which barge to

use for carrying any particular product at any given origin port, respectively, i.e.,

1 if a towboat s is used between ports (i,) € (Z, J) at time period ¢

Ysijr =
0 otherwise;
4
1 if barge b connected to towboat s is used to carry commodity m
Yinbsijt = between port i and j in time period ¢
0 otherwise;

\

For notation simplicity, we define Y as Y := Y! |J Y2. The second-stage decision
variables X := { X psijio| Vi € M,b € B,s € S,(i,j) € (Z,J),t € T,w € Q} to
denote the amount of commodities of type m € M transported using barge b € B
of towboat s € S along arc (i,j) € (Z,J) at time period t € T under scenario
we O H = {Hyju|Vme M,ie ZUJ,t € T,w € Q} to denote the amount of
commodities of type m € M stored in porti € 7|J J at time period t € T under
scenario w € (); and U := {Umjtw} to denote the amount of commodities of type
m € M shortage in destination port j € J at time period t € 7 under scenario

w € Q.
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It needs to be noted here that the inland waterway transportation frequently
impacted by the possible delays experienced by the barges in locks between two
connecting ports. To simplify the modeling process, in this study we ignore the
congestion occurred in the locks. Instead, we capture this delay through a feasible
time limit, denoted by #;;. The introduction of f;; provides a time window for
towboats to deliver the commodities between each source-destination pair which

otherwise will not be economical/feasible if violated. Let A, [;;, and d; to represent

ijs
the average delay in locks, the number of locks, and actual waterway distance
between each origin-destination port (i,j) € (Z, J). We further denote 7y to be
the average speed of a towboat s € S and t; and ¢, to be the average loading and
unloading time for a barge. The total travel time for a towboat s € S between each
origin-destination port (i,j) € (Z,J) at time t € T can now be approximated as:
{ Ymem LoveB (b + tu) Yowsije + (Z_;]t + Alij)YSijt}, while this travel time is assumed
to be restricted by a feasible time limit £;;.

We now introduce the objective function of our proposed two-stage stochas-
tic programming mathematical formulation, referred to as [IWT]. Note that the
decisions about towboat and barge selection (Y) are made prior to a realization
of any stochastic event. However, after the stochasticity is revealed, a number of

second-stage decisions, such as transportation (X), storage (H), and shortage (U)

decisions, are made. Our proposed mathematical model is introduced below.
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[IWT]  Minimize Yy Y ) (l[)StY51]t + ) ) ﬂmthmbs,’t> + ) 0.Q(Y, w)

seSicTjeJiteT meMbeB we
4.1)
subject to
Y Yuwsip <1 VoeB,seS,icl,je J,teT 42
meM
OYeijt < Y Y Yuusit < OYuy VseS,ieZjed,teT (4.3)
meMbeB
Z Z Z Z Ymbsijt < 0y VieZteT 4.4)
meMbeBseS jeJ
Yo ) Y < T VieZ,teT (4.5)
jeJiseS
Z Ysijt < dg VseS,ieZ,teT (4.6)
Jedi
Z Z Ymbsijt < api VbeB,iel,je J,tec T 4.7)
meMseS
_ d;; )
Z Z (tl + tu)Ymbsijt < tij ( i + All]) sijtvs €S,iel,
meM beB Ust
jeJi,teT (4.8)
Yowsip € {0,1} Vme M,be B,s€ S,i€ L,
jeJi,teT 4.9)
Yajp € {0,1} Vse€S,ieZ,jeJ,teT (4.10)

with Q(Y, w) being the solution of the following second-stage problem:

Q(er) = Mg(nlf{%lze Z Z < Z hit Hmitew + Z Z Z Cmbsithmbsijtw

teT meM NieZUJ beBseS (i,j)e(Z,T)
+ Z YmitLmitw + Z nmjtumjtw> (4-11)
ieT jeJ
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subject to

IN

Zmitw gomithm - M,l - I,t - T,

weQ (4.12)

Zitw + (1= “m)Hmi,t—l,w = Z Z Z mesijtw + Hpitw
beBseS jeJ;

Vme M,ieZ,teT,we Q) (4.13)

Z Z Z Xumbsijtw + (1- “m)Hmj,t—l,w = dmjt + Hinjtw — Umijtw
beBseSi€l;

VmeM,je J,teT,weQ (414)

Y Huitw < WNieZ|JT teT,weQ  (415)
meM
Xbsijto < MIN{Wijt, Wy} Youpsijt Vm € M, b € B,

seS,ieZ,je J,teT,w e (14.16)
X ..
C%?E)fgwmmeEMﬁeBﬁe&
m
ieZ,jeJ,teT,we) (4.17)

mesijtw/ Huitw, Hmjtwr Zpitw € R* (4.18)

The objective function (4.1) minimizes the first-stage costs and the expected second-
stage costs. The first two terms in (4.1) represent the fixed costs associated with
using towboats and loading and unloading commodities into the barges. Con-
straints (4.2) restrict the loading of one commodity m € M in a given barge b € B
at time period t € 7. Constraints (4.3) restrict the minimum (J,) and maximum
(6s) number of barges that can be connected with a given towboat s € S at any
time period t € 7. Constraints (4.4) and (4.5) set the maximum availability of
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barges and towboats in a given port i € 7 at time period t € T to 8; and 1, re-
spectively. The unavailability of barges and towboats due to period maintenance
activities are captured by binary parameters ag;; and a,;; at constraints (4.6) and
(4.7), respectively. Constraints (4.8) set total travel time restriction for a towboat
s € S between each origin-destination port (i,j) € (Z, J) at time period t € T . Fi-
nally, constraints (4.9) and (4.10) set integrality restrictions for barge and towboat
selections.

The second-stage objective function (4.11) consists of four terms: the first term
represents the costs associated with storing commodities at the source and desti-
nation ports; the second term represents the transportation costs of flowing com-
modities within the inland waterway transportation network; last two terms in
the objective function, respectively, capture the commodity processing costs at any
origin port and the commodity shortage costs at any destination port. Constraints
(4.12) restrict the commodity processing capability of an origin porti € Z in time
period t € T under scenario w € () to a given availability ¢,;,. Constraints
(4.13) are the flow balance constraints for origin ports i € Z, indicating that all the
processed commodity m € M can be either stored or transported to a destina-
tion port j € J; at time period t € 7. Constraints (4.14) maintain flow balance at
destination ports j € J in time period t € 7. These constraints indicate that the
demand (d,,j:) for commodity m € M at any destination portj € J in time period
t € T can be satisfied either via the origin ports, stored inventory, or via an exter-

nal source while the balance can be stored in the destination port’s inventory for
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future use. The inventory storage restriction at any porti € Z|J J is imposed via
constraints (4.15). Constraints (4.16) and (4.17) set weight and volumetric capacity
restriction for a given barge b € B carrying commodity m € M between each
origin-destination port (i,j) € (Z,J) at time period ¢t € 7. Finally, constraints
(4.18) represent the standard non-negativity constraints.

4.4 Solution Approach

By setting |Q}| = |T| = |S| = |B| = 1, problem [IWT] can be reduced to a fixed
charge network flow problem which is already known to be an N'P-hard problem
[12, 65]. Therefore, we find it difficulty to solve the large instances of [IWT] using
commercial solvers, such as Gurobi. To overcome this computational burden, we
propose a parallelized hybrid decomposition algorithm combining Sample Aver-
age Approximation (SAA) algorithm with an enhanced Progressive Hedging (PH)
algorithm. The techniques used to enhance the PH algorithm are penalty parame-
ter updating, global and local heuristics, scenario bundling, and a nested decom-
position algorithm. The aim of adopting all the solution techniques is to generate
quality solutions in solving large instances of problem [IWT] in a reasonable com-

putational time.

4.4.1 Sample Average Approximation

To generate reliable solutions, problem [IWT] needs to be investigated with a large
number of scenarios which may pose serious challenge from solution standpoint.
To alleviate this challenge, we adopt Sample Average Approximation (SAA) method

[119, 107]. SAA is a well known technique that has been widely used in solv-
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ing problems in diversified application areas, including logistic and supply chain
design, vehicle routing, production-routing, and many others. Following this pro-
cedure, we generate a SAA problem by selecting a set of random samples from the
set of available scenarios. More specifically, we randomly generate a small sample
of size N from the scenario set () (where N < () and approximate the recourse
function with the sample average function % Yuen Q(Y, n). Problem [IWT] can

now be approximated by the following SAA problem:

Minimize {gm =) ( )IDIDS (wstst > ) metymbsijt)

teT \seSiclje; meMbeB

1 N
o)
n=1

For sufficiently large sample size N, problem (4.19) converges to the optimal
solution of the original model [IWT] with a probability of 1.0 [66]. However, with
an increase in N, the computational time required to solve problem (4.19) becomes
excessively large. In practice, there exists a trade-off between the achieved solution
quality and the computational burden associated with solving the large scenario
subproblems. Next, we summarize the steps involved in implementing the SAA

technique to solve problem [IWT] as follows:

1. Generate E independent samples of product supply and water level scenar-

ios of size N i.e., {9} (w), p?(w), ..., N (w)} and {w} (w), W*(w), ..., N (w)},

Ve = 1,2,...,E, where ¢ = {@nit0|Vm € M,i € Z,t € T,w € O}, w =
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{wij|Vi€e Z,j € J,t € T,w € O} and solve the corresponding SAA prob-

lem:
[IWT(SAA)]Minimize{g(Y Y. ( Y)Y ) (zpstqut ) nmthmbszﬁ)
Yey teT \seSicljeJ; meM beB
1 N
+— Y Q(Y,n)) (4.20)
|N| n=1

This SAA problem is solved for each replication e = 1, ..., E. Consider v

and Yy to be the optimal objective value and the optimal solution of (4.20),
respectively.

2. In the next step, we compute the average of the optimal objective values of the
SAA problems, denoted by oY, by solving E replications. We further denote
_N to be the variance of all the corresponding SAA problems. We then obtain

the following:
5N_live. o2 — 1 i(ve _51\1)2
E _Ee:1 N~ zleV_(E_l)Ee:l N E

Parameter o} is an unbiased estimator of the optimal ob]ectwe value of

[IWT] denoted by v*, which shall satisfy this property o} < v*. This implies
that oY provides a stat1st1ca1 lower bound for the optimal objective value of
problem [IWT] and (T;EV is the estimator of the variance of this lower bound.

3. Next, a feasible first-stage solution Yf\] € Y is chosen and utilized to evaluate
problem [IWT] with a newly generated reference sample size N’ (N’ > N)
as follows:

= DL L Y (4%t & L T

seSieljeJ;teT meMbeB
1 X
n=

Here, the estimator gn:(Y) provides a valid upper bound for the original
problem [IWT]. The variance of §x/(Y) is obtained as follows:

. 1 N . .
UI%]/(Y) = m Z{ Z Z Z (lpstysijt + Z Z Umbtymbsijt)
( ) n=1\seSieljeJ; tcT meM beB

Si
2
QY1) - gN/(Y)}
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4. Through the estimators calculated in Steps 2 and 3, the optimality gap, gapn £.n(Y),

and its variance, 02, , are calculated as follows:

gap’

gapnen (V) = gn(P) — oF

UE
2 _ 2 2
Ogap = i (Y) + Y

The confidence interval for the optimality gap, gapn g av(Y), is obtained as

follow:
1/2

() —a) + za{aﬁ,,(ff) ; ggg}

where z, = ®1(1 — ) , and ®(z) is the cumulative distribution function of
the standard normal distribution.

4.4.2 Progressive Hedging Algorithm
The first step of the SAA algorithm requires solving a two-stage stochastic mixed
integer linear programming model [IWT(SAA)] with N scenarios. Although the
size of this model is considerably lower than the original problem [IWT],i.e., N <
|}, depending on the size of |Z|,|J|, and |T|, solving such model can still be
considered challenging. In order to address this challenge, we employ Progressive
Hedging (PH) algorithm that decomposes problem [IWT(SAA)] by scenarios [117,
95]. The cornerstone of this algorithm is scenario decomposition technique (based on
the augmented Lagrangian relaxation scheme) which is utilized to solve a number
of individual scenario subproblems. Interested readers may review the work by
[144, 150] to gain a comprehensive overview of the PH implementation.

In problem [IWT(SAA)], constraints (4.16) and (4.17) link the first-stage de-
cision variables with the second-stage decision variables. These constraints also
restrict problem [IWT(SAA)] to be separable by scenarios. To overcome this chal-

lenge, we introduce two new copy variables, namely, { Yypsijtn fvme MbeBses,icz,je,
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teTneN € {0,1} and {Ygijm bvses (ijye(z,g)eTnen € {0,1}, which will allow

problem [IWT(SAA)] to be decomposable by scenarios. Problem [IWT(SAA)] can

now be modified as follows:

.1 X
Aéglg("%%eﬁ Z{ YY) ) (lPstYsi]’tn + Y ) ﬂmthmbsijtn) +Q(Y1”)} (4.22)

n=1\seSieljeJ; teT meMbeB

subject to (4.12)-(4.15), (4.18), and

Y. Yusijn < WbeBseS,iclje J,teT,neN423)
meM
ésYsijtn < Z Z Yinbsitn < 3sYsijtnvs €§ie I/j e Jite T,ne€ N (4.24)
meMbeB
Yo YY) Yausijm < 64VieIteT,neN (4.25)
meM beBseS jeT;
Yo Y < wVieIteT,neN (4.26)
jeJ; seS
Y Y < agVseS,ieI,teT,neN (4.27)
jed
Yo ) Vawsiin < aVbeBiceIjeJ,teT,neN (428)
meMseS
_ dii
Yo Y (4 ) Yisijen < Eij— (l +Alij) Yijtn
meM beB Ust
VseS,icZ,je J,teT,neN (4.29)
mesijtn < min{wijtn/wb}ymbsijtnvm e M,beb,
seS,icel,jeJ,teT,neN (4.30)
mesijtn
p— < opYupsijimforallm € M,b € B,s € S,
m
1€Z,je J,teT,neN (4.31)
Ymbsijtn = Ymbsijtn/v(n/ 1’1/) €N,n # n (4.32)
Ysijtn = Ysijtn’v(”r nl) € N,n# n' (4.33)
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Yosijin € {0,1}Vme M,beB,se€S,ieI,je J,t€T,neN (434)

Yaim € {0,1}Vse€S,ieZjeJ,teT,neN (4.35)

Constraints (4.32) and (4.33) are referred to as nonanticipativity constraints which
not only link the first- and second-stage decision variables but also force all the
scenarios to yield same values for each first-stage decision variables. Additionally,
these constraints restrict problem (4.22) to be separable by scenarios. To overcome
this problem, we introduce two new variables,

{Youwsijt fvme mpeBsesiczjegrer € {0,1} and { Yt byses, (ijez e € 10,1},
referred to as “overall design vectors”. With the introduction of this two vari-
ables, constraints (4.32) and (4.33) can now be replaced with the following set of

constraints:

Ymbsijtn = Ymbsijth eM,beB,seS,ie I,] eJ,teT,ne N(4.36)

Ysijtn = Ysijtvs €SieljeJ,teT,neN (4.37)

Ymbsijt/Ysijt S {0,1} VYme M,be B,seS, (l,]) € (I,j),t eT
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Constraints (4.36) and (4.37) can be relaxed using the augmented Lagrangian

strategy, proposed by Rockafellar and Wets [117], and yield the following objec-

tive function:

Minimize

N
Minmize <3 VDT Y (et EE Yo

seSieljed; meMbeB

)+Q(Y,n)+

Z ngbsz]tn(ymbsz]tn_ mbsz]t Z 219 mbsijtn

seSiel jeJ; < meMbeB meM beB

N ] 1 _
~Youpsijt) + Bsijen (Ysijen — Yeije) + EG(Ysijtn — Ysijt)z) }

where {psijin fvme M beB ses,ieT,je JiteTneN and { Bsijin }yses,icT je 7,1 TneN de-

fine the Lagrangian multipliers for the relaxed constraints and @ and 6 are the

penalty ratios. Since variables { Y,psijtn fvme M beB, seS,icT,je T teT,neN, and { Youpsiin }

Vme M beB,seS,icT je J,teT neN arebinary, quadratic term Yo s Yier Yje 7 Lre7 0 (Yijin —

Ysi]-t)z can now be reduced as follows:

Z 2 Z Z G(Ysijtn sz]t Z Z Z Z ( 51]tn 29Ysijtanijt + 9( _sijt)z)

seSieljeJ;teT seSieljeJ;iteT

~ Y Y ) ) (QYsijtn — 20 jjen Ysije + 9Ysijt>

seSiel jeJ teT

Similarly, we can also simplify the quadratic term }_,,c v Lpes Lses Lier Lje,

YteT OVinbsijtn — _mbsijt)z and yield the following objective function:
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N
L _ 0
]\({Igz;(rgzze E ) { Y ) ((1Pst+,35ijtn—9Ysijt+§)Ysijtn+ Y Y (o
7Ny n=1 T

scSiclje; meM beB

- (o4
+Cmbsijtn — OYmpsije + E)Ymbsijtn) +Q(Y, n) Z 2 Z ;Bsz]tn sijt T
seSieljeJ

S LL S M- ¥ L LY L oVt

seSzeI]ej meMbeBseSiel jeJ

Z Z Z Z Z ﬂYmbszjt} (4.38)

mEM beBseSieljeJ

With fixed values of the overall plan {Y,psijt Fvme M, peBses icz je 7, re and
{Ysijt}VseS,ieI,je J.te7, the last part of the objective function (4.38) becomes con-
stant. This will allow the subproblems to be separable by scenarios n € N. The

revised subproblem now becomes:

[IWT—PHA(n)]Mmzmzze Yy ¥ Z{ Wst + Bsijtn — O Vije + g)YSijm + ) ) (

YHXZU &5 i€l jeJ;teT meMbeB

- (%
Nmbt + gmbsijtn - ﬁYmbsijt + E)Ymbsijtn} + Q(Y/ n) (4.39)

subject to (4.12)-(4.15), (4.18), (4.23)-(4.31), (4.34), and (4.35). Let r be the cur-
rent iteration of the PH algorithm. We let {7 , . ]tn} and {p Sl]m} to denote the
Lagrangian multipliers and 9" and " to be the penalty parameters at iteration r of
the PH algorithm. In the basic PH implementation, N deterministic subproblems

[IWT-PHA ()] are solved and the consensus parameters

{ mbszjt}VmG./\/l beBscS,icT je JiteT and { sqt}VseS,ieI,jeji,teT are obtained. If the to-

tal gap between the binary variables, i.e., {Y”, }and {Y". 1, and the consensus

mbsijtn sijtn 7

parameters. i.e., {Y bszjt} and {Y Z]t} falls below a threshold limit, the algorithm
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.
sijtn

terminates; otherwise, we update the values of {{7 , . ].m}, {B..... }, ¥, and 0" using

equations (4.40)-(4.43) and the process continues.

-1 -1 vr—1
:nbsijtn N ;zbsijtn +07( :nbsijtn o Y;Lbsijt)
Vme M,beB,scS,icl,je J,teT (4.40)
o — AV (4.41)

Bujtn ¢ Bl + 0 (Yijw — Yi)Vs € S, (i,]) € (T, T),t € T (442)

sijtn

00— AP (4.43)

In the first iteration, the values of {¢~, ]-tn} and { ,82;81} are set to zero for each
scenario nn € N. Penalty parameters {#"="} and {6"="} are initialized with a fixed
positive number which eventually turns into {9",6"} — oo with the progression
of the PH algorithm. The constant parameter A is set to a value grater than 1 i.e,,
A > 1. A pseudo-code of the basic Progressive hedging algorithm is provided in
Algorithm 1.

Termination criteria: The PH algorithm terminates upon satisfying one of the fol-

lowing conditions:
1 vr—1 vr—1
*xN YneN LseS LieT LteT Zjeji (ZmeM YbeB |Y;1bsim - Y;;bsit| + ’Y;ijtn - Ysri]‘t
) < €; where € is a pre-specified tolerance gap.

¢ 10 consecutive non-improvement iterations.
e Maximum iteration limit is reached (i.e., iter™** = 500)

e Maximum time limit is reached (i.e., " = 10,800 CPU seconds)
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4.4.3 Enhanced Progressive Hedging Algorithm
4.4.3.1 Penalty Parameter Updating

The performance of the basic PH algorithm is highly sensitive to the values set
for the penalty parameters ¢" and 6. Prior studies, such as [22, 60], show that
if conservative values are set for the penalty parameters, then the algorithm con-
verges to a near optimal solution, but with an expense of high computational time.
On the contrary, if the values of ¢" and 6" are set too high, then the algorithm
quickly converges to a suboptimal solution. To overcome this problem, we uti-
lize the dynamic penalty parameter adjustment approach proposed by Hvattum and
Lokketangen [61]. This approach dynamically adjusts the penalty parameters 9"
and 6" based on the computational performances of the PH algorithm from prior
iterations. Let A}, A5 and A}, A} be the indicators of the convergence rates in the
dual and primal space, respectively. The penalty parameters ¢" and 6" are now dy-

namically updated as follows:

\/ 2
Aq - Z Z mbsz]tn o ;’lbsi]'t)
eN

v 1
AE - Z ( rbsqt Y;bsz]t)

>
[ R
I
—~
=
=
Y
oS
~
=
SN—
N
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ro i A A >0 T i AL - AL >0
0= 11 elseif Aj—AFt >0 0= 10l dseif AL—A; >0

91 Otherwise 0"~ Otherwise

\

where I' is a constant parameter whose value is set to I > 1.
4.4.3.2 Global and Local Heuristic Strategies
We adopt two heuristic strategies, global and local heuristics as proposed by Crainic
etal. [26], to further accelerate the convergence of the basic PH algorithm. The un-
derlying concept of these strategies are to modify the barge loading/unloading
cost 77+ and towboat usage cost ¢5; in such a way that help to guide fixing few
decision variables and eventually accelerates the convergence of the basic PH algo-
rithm. The first strategy is referred to as global heuristic since this strategy updates
Nmpr and P at the end of each PHA iteration r. On the other hand, in local heuristic,
cost parameters 7, and s; are adjusted within the scenario level.

As discussed in section 4.4.2, problem [IWT-PHA (n)] consists of N determinis-
tic sub-problems. Following Algorithm 1, we collect consensus parameters { Y], . jt}
VmeM beBses,icT teT and {Ysrijt}Vses,ieI,jex,teT at the end of each iteration r. The
higher value of {Y;bsijt} signifies that barge b € B is used with towboats € &
to transport commodity m € M between origin-destination pair (i,j) € (Z,J) at
time period t € 7 in most of the previous iterations. In contrary, a lower value of
{Yrrnbsijt} indicates that this decision was not a favorable selection in most of the
previous iterations. Similar conclusion can be made for {Y; jt} aswell. Let @ and a

be two parameters indicating the upper and lower threshold values for {Y? , . ]-t}.
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If{Y . j +} yields the value greater than 4, then decreasing the value of 7, will
motivate the sub-problems to select more barges in the following iterations. Simi-
larly, two other thresholds b and b can be defined as the upper and lower limit for
{Yr. i +} and same decision strategy can be applied for this consensus parameter as
well. These cost adjustment strategies will help to fix the decision of using barges
and towboats to either one or zero which will eventually help to reduce the size of

the overall problem. The adjustment strategy is given below:

;

r—=1 r—1 = r—1 r 1
KMmpt 1 Ymbsz]t <da qust f Y51]t
r, = 1,.r—1 r—1 . r = 1r—1 =1 S
bt i« Tmbt Zf Ymbszjt >4 Pt Ewst f Ysz]t =
17;;} Otherwise '=1 Otherwise

\ \

where 17/ . denotes the modified cost of loading and unloading barge b € B with
commodity m € M in time period t € T and [, to be the modified cost of using
towboat s € S in time period t € T in the r-th of the PH iteration. The values
of @, a, b, and b are set to be any values form the range 0.7 < (g, I_?) < 1 and

< (a,b) < 0.3. Finally, the constant parameter « is set to be any value greater
than 1.0.

The performance of the global heuristic strategy can be further improved by
modifying the fixed cost of using barges and towboats locally within the scenario
level. The modification of the fixed costs only impact the sub-problem at scenario
n of a particular iteration r; therefore, this strategy is referred to as local heuris-
tic [26]. Following this strategy, if the gap between the binary variables and the

| and |Y7 ! |, are

corresponding consensus parameters, i.e., | Y ! sijtn — Sl]t

mbsijtn mbszt
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sufficiently large for any scenario n € N of a particular iteration, then the fixed
cost of using barges and towboats are adjusted. The local adjustment strategy is

presented below:

(

r—1 ; r—1 VT ar r—1 —
Kyptn  Lf ‘Ymbsijtn - Ymbsijt’ >/ and Yobsijtn = O

r = 1,r—1 r—=1  _ yr far r—1  _
Tnbtn x Tmbtn Zf |Ymbsijtn Ymbsijt| = a and Ymbsijtn =1

r—1 :
Noptn ~ Otherwise

L O D S Y;ijt\ > bf and Y-l =0

stn sijtn sijtn

Yin = Lpr boif |yl -y

stn sijtn sijt

| > b/ and YTl =1

sijtn

\ o1 Otherwise

where 77, .. and ¥}, represent, respectively, the adjusted fixed cost associated
with using barges and towboats under scenario n € N in the r-th iteration of the
PH algorithm; « is a constant parameter whose value is set to x > 1; afo" and bfor
are threshold values at which local adjustment to the 7, ., and ¢, are made and
are, respectively, set in the following range: 0.5 < a/* < 1and 0.5 < b/* < 1.
4.4.3.3 Scenario Bundling
The performance of the PH algorithm can be improved even further by grouping
the scenarios and then solve [IWT-PHA(n)] for each scenario group, commonly
referred to as scenario bundling/grouping technique [1]. Following this technique,
instead of solving PH subproblems for each individual scenario, a set of bundles

are created from the scenarios, and the PH subproblems are then solved for each

scenario bundle / € L. Scenario bundling can be done in many ways which would
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be more specific to the model (e.g., grouping/bundling high, medium, and low
supply /water level scenarios). Let us partition set N into |£| bundles where the
probability of each bundle, denoted by p;, will be p; = Y, c; p». Problem [IWT-

PHA(n)] is now solved for each bundle | € L as follows:

- 6
[[IWT—PHA(l)]Mznzmzze{ Yy Y ) < st + Bsijir — OVsije + E)Ysijtl +
XZU  ses i€l jeJ; teT

- 19
2 Z (met + Cmbsijtl - ﬁYmbsijt +5 2 mbsz]tl} + Z ( ) (4.44)

meMbeB nel
subject to (4.12)-(4.15), (4.18), (4.23)-(4.31), (4.34), and (4.35). Note that the def-

initions for { Y} and {Y;jy} will remain same as [IWT(PHA)] but for each

scenario bundle ! € L.

4.4.4 Nested Decomposition Algorithm

Even though the computational burden in solving problem [IWT-PHA ()] now
reduced significantly, the problem can still be considered challenging depending
upon the size of |Z|, | J|, |M|, |B], |S|, and |T|. To address this challenge, we
employ another decomposition technique, commonly referred to as nested decom-
position (ND) algorithm [70], to further reduce the problem size for [IWT-PHA (n)].
This algorithm utilizes the concept of Stochastic Dual Dynamic Integer Program-
ming (SDDiP), which is commonly used to solve multi-stage stochastic integer
programming problems with binary state variables, and are capable of converg-
ing in a finite number of iterations [158].

Recall that problem [IWT-PHA (n)] includes constraints (4.13) and (4.14) which

connect inventory storage decisions between multiple time periods. These linking
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constraints restrict problem [IWT-PHA (n)] to be decomposable by time period t €
T, which otherwise would significantly reduce the size of the overall problem. To

overcome this problem, we introduce duplicating variables Hfm’ = H:;;ZWm €

M,i€Z,teT,ne N}and H := {H;r]etmm e M,je J,t € T,ne N} for

each linking variables {H,,;;—1,,} and {H,,j;—1,,} and replace constraints (4.13)

and (4.14) by the following set of constraints:

Zmitn + (1 - “m)H,ZiZ = Z Z Z mesijtn + Hmitn
beBseS jed;

Vme M,ieZ,teT,t>1 (4.45)

YY) Xuwsijen + (1 — “m)H;ZﬁZ = dwjt + Hujtn
beBseSieT;

Vme M,je J,teT,t>1(4.46)

H = Aypiy1n  tmitn € RMFEZHTIZL Sy e Myie Tt € Tt > 1(4.47)

mitn
HY™ = At 104 mjin € RMFTIHTIEL Sy e M je 7.t € Tt > 1(4.48)

mjtn

HP HPY e RT (4.49)

mitn’ = “mjtn

where {H Ziz FomeMm,ieT 7,neN is a duplicating variable representing { Hyi 1,1 }

vmeM,icT ) TneN and { Hyi 110 Fyme m,icT|) 7 nen is the solution for { Hyitn byme m,

ieT\JJneN at time period t — 1, which is fixed when solving for time period t and

{Mmitn Fyme M icT ) 7 teT nen are Lagrangian multipliers which are unrestricted in
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sign. With this, problem [IWT-PHA ()] can now be decomposable by time period

t € T which is shown below:

. . . Y 9
[IWT-ND(n,t)] MinimizeO; := Y Y ) {(%t + Bsijtn — O¥sijt + ) Vsijen +
Y HX,Z,U seSiel jeJ; 2

_ 1%
Z Z (77mbt + gmbsijtn - ngmbsijt + E)Ymbsijtn} + Q(Y/ t Yl) + x(4.50)
meM beB

subject to constraints (4.12), (4.15), (4.23)-(4.35), (4.45)-(4.49), and

K > Ot—l—l,q + Z Z ,”mi,tJrl,nq(I:Imitnq - Hmitn) + Z Z ]/lmj,tJrl,nq(I:Imjtnq -
meMiel meMjeg

Hmjtn )Vq (4'51)

where «x; defines a cost to go function. In each iteration g of the ND algorithm,
problem (4.50) needs to be solved separately and sequentially for each time pe-
riod t € T, and the future cost cuts (4.51) are added in [IWT-ND(,t)] from the
following iterations g 4 1. Essentially, problem [IWT-ND(n,t)] is solved through
successive forward and backward pass in each iteration g of the ND algorithm. The
forward pass yields a feasible upper bound, denoted by UB,, while the backward
pass, which generates cuts from the relaxed subproblems, provides a valid lower
bound for the original problem [IWT-PHA(n)]. The process is continued till the
gap between the upper and lower bound falls below a pre-specified tolerance level
enp. Figure 4.2 delineates the steps involved in solving [IWT-PHA(n)] using the

ND algorithm.

Forward Pass: The purpose of the forward pass is to generate a valid upper bound,

UB;, for the full problem. In this step, the optimization model is solved sequen-
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tially for each consecutive time period by using the solution obtained from the

previous time period. The upper bound UB; is calculated as follows:

UB; = Y (Oy—k) Vg (4.52)
teT

It is obvious from (4.52) that the sum of the optimal solutions of the forward pass
subproblems in any iteration g, qu, minus the cost-to-go approximations, ki, for
all time periods of that iteration g provides a valid upper bound for the full prob-

lem [IWT-PHA (n)].

Backward Pass: After solving all the forward subproblems for each time period
t € T, the process of solving [IWT-PHA (n)] using the backward pass initiates. Back-
ward pass solves the subproblems in descending order of the time periods and
generates cuts from the solutions of the future periods. These are cumulative cuts
but specific to each time period t € 7. This means that the cuts are added in
each iteration g, whenever a new backward pass subproblem for each time period
t is solved and are then kept in the following forward passes. These cuts provide
approximations to predict the cost-to-go functions within the planning horizon.
Cuts, added in the backward pass of each iteration g, are still kept in the forward
pass until the gap between the upper and lower bound reaches to a pre-specified
tolerance level eyp. The fixed variables stored in the forward pass, I:Imi,t,nq and
Hmj,t,nq, are also used in the backward pass. The lower bound, LB, is then calcu-

lated as follows:

LB, = O14 Vg (4.53)
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Here, the solution of the first time period (i.e., t=1) provides a valid lower
bound to the total cost since it contains only a subset of the constraints from the

original problem [IWT-PHA (n)].

Backward Pass

r i r------------------------------I
i H i Forward Pass |
i1 ! Solve .\: 1 i
i (‘ il g Forward Pass |4 -—-"s’ Hy4044 :
~ 1

i Sm———— H =ltot=T | = H
i e ! — I 2 B O i
i {0 : Heq | -~ |
1 ~o i XL ! Y™ = 1, ’ i
i Mg ! Solve i < a A i
! I pal I TN Hi-ng O-nq |
! ik < "1 Backward Pass ! < :
; ~~Oarng | ~Ttot =1 : p o |
i Ht+1)q ! i L. H.,;0 1
i K H i e H
1 A 1 HY" = Hyo /

i £ Ber-ng ; | M « ;

Kr-g=--{ 1 -——
i a-07== 51 1 e TN i R
1 ] ! q  "Pq = H 1
: S e NS 7] |
I Hrq H 1 1
! 1 ! 1
L 1 D ] [
Figure 4.2

Nested decomposition algorithm

4.4.4.1 Valid Inequalities:

To enhance the performance of the ND algorithm, we first derive a number of valid
inequalities by utilizing the special structure of our problem [IWT] and then added

to problem [IWT-ND(#n,t)]. The proposed set of valid inequalities are presented

below:
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e Constraint (4.54) provides a lower bound on the overall barge usage to en-
sure the demand satisfaction for commodity m € M at each time period
t € T. These constraints are known to be as surrogate constraints. The value
of o can vary between 0.0 and 1.0. When ¢ = 1.0, all the demand are required
to be satisfied through the inland waterway port network.

Yo X )Y Vi > ) 0dy Vme M,teT (4.54)
beBseSicel jeJ jeJ

e While choosing between a number of barges of similar capacities, symme-
tries may occur which may elongate the search time for the solver. To ad-
dress this issue, we add the following lexicographic ordering constraints (4.55)
and (4.56) which set priorities on the barge selection. Such priorities help
to break the duplications caused by the barge selection symmetry, which
thereby accelerate the performance of the branch-and-bound process.

Yl,bfl,sijt > YlbsijtVb eB \ {1},8 €sS,ie I,] e J,teT (4.55)
m m
20PY, gy > Y 2 PY g Ym € M, b e B\ {1},
p=1 p=1
seS,iel,jeJ,teT (4.56)

e Symmetries may also arise in the case of towboat selection. Consider S;
as the subset of towboats of same type, ie., S, C S and s, C S, where s,
represents a set of the members belonging to S. in ascending order. Similar to
constraints (4.55) and (4.56), following lexicographical ordering constraints
(4.57) and (4.58) are applied for each S to set the priority in utilizing towboats
of the same type.

Yo 1t > YeiuVse €S \{1}i€eZjeJteT (4.57)

l/)sé—l,tYs[,—l,ijt > lpsé,tYsé,ijtvsé S Sé \ {1}/i S I/j eJ,teT (4.58)

o Constraints (4.59) generate a lower bound on the number of barges that are
required for satisfying the demand at any time period t € T \ {1}. If the
cumulative demand over period t is greater than or equal to minimum of the

maximum possible inventory held (%) and initial inventory H f;;v, then at

least a certain number of barges need to be used in that specific time period
t.
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. pr@v 7
Yjeg 0dmjt —min{¥e 7 Hyip, Yje 7 hi}
Wy,

Vme M, te T\ {1} (4.59)

LY ) ) Yowsi

beBseSiel jeJ

4.4.4.2 Benders cut:

Standard ND algorithm is designed to solve convex optimization problems for
which different cuts, such as Benders cuts, can be generated in a much simplified
way, i.e., using the objective value and the Lagrange multiplier of the constraints
(4.47) and (4.48), which provides better convergence. Since we are applying the
ND algorithm for solving non-convex, MILP problems, Benders cuts cannot be
applied directly. Therefore, to generate a valid Benders cut, the subproblems need
to be convexified or relaxed appropriately. Let Oth; be the objective of the relaxed

subproblem at time period t € 7. Benders cuts can now be generated as follows:

kt’1 =z Z Z.umztnq mit—1,nq — Hmi,t—l,n)
meMiel
Z Z:um]tnq mjt—1,nq — Hm]',t—l,n) Vq (4.60)
meMjedJ

Note that Benders cut is the weakest of the possible cuts; however, it has the ad-
vantage of being easily and quickly computed. It works well for the tighter for-
mulation when the solution of the linear relaxation is close to the actual solution

of the MILP.

4.4.4.3 Lagrangian cut:
The performance of the ND algorithm can also be enhanced by adding Lagrangian

cuts. These cuts are generated by obtaining Lagrangian relaxation of [IWT-ND(#,1)]
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which yields the convex hull of the noncomplicating constraints. First, we dual-
ize the linking constraints (4.47) and (4.48) and then penalize their violation in the
objective function by the vector of Lagrange multipliers, {itnq } and {pmjtng }, re-
spectively. These Lagrangian multipliers are unrestricted in sign. The following

relaxed subproblem is then obtained:

C . - 0
]\\/{Igz;(n%%e OtLqR = Z Z Z {(lpst + Bsijtn — 0Ysije + E)Ysijtn + Z Z (mpt +

e seSiel jeJ; meM beB
= 1%
Cmbsijtn - ﬂYmbsi]’t + E)Ymbsijtn} + Q(Y/ t, n) + Kt — Z { Z ,umitnq(
meM ‘i€l
HTIIZZZ - I:Imi,tfl,ﬂ) + Z VTH]tnq(HZﬁZ - Hmj,tl,n)} (461)
jeJ

subject to constraints (4.12), (4.15), (4.23)-(4.31), (4.34), (4.35), (4.45)-(4.46), (4.49),

and (4.51).

With Lagrange multiplier values closer to their optimal, tighter approximation is
obtained and stronger cuts are generated. The optimal values of the Lagrange
multipliers, {#mitng} and {pmjing }, can be obtained by solving the following sub-

problem:

.y L _ 0
Maximize OtLqD :{Mzmmzze OtLqR = Z Z Z {(¢st + Bsijtn — 0Ysijt + ) Yijin +

Hmitng:Hmjtng Y HX,Z,U sES Z'GI]'E\Z' 2
- 1%
Z Z (Umbt + gmbsijtn - 191/mbsiji‘ + E)Ymbsijtn} + Q(Y, t, 1’1) + Kt — Z
meM beB meM
{ Z Vmitnq(HZr;Z - Hmi,t—l,n) + Z ijtnq(HZ;iZ - I:Imj,t—l,n) }} (4-62)
i€ j€ET
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subject to constraints (4.12), (4.15), (4.23)-(4.31), (4.34), (4.35), (4.45)-(4.46), (4.49),

and (4.51).

The coefficients obtained through solving the maximization problem (4.62), are

used to generate Lagrangian cut (4.63) for any fixed time period t € 7.

kt—l > O Z Z ,umzfnq mit—1,nq — Hmi,t—l,n)
meMiel

+ 2 Z Vrl;qujtnq(Hmj,tfl,nq - Hmj,tfl,n) Vq (4.63)
meMjeg

The maximization problem in (4.62) can, however, be computationally expen-
sive. Therefore, we adapt the Lagrange multipliers for each of the sub-problems
of the Backward Pass using the sub-gradient method. The Backward Pass steps

under the ND algorithm with the application of Lagrangean cuts are listed below.

For time period t = T, ..., 1 in iteration g:

Step 1. Solve the original MILP subproblem in (4.50) to get the actual objective value,
th.

Step 2. Solve the LP relaxation of the MILP subproblem and store the dual variables,
{lumztnq } and {:um]tnq }

Step 3. Use the dual variables from the LP relaxation as an initial guess for the La-
grange multipliers.

Step 4. Solve the Lagrangean subproblem (4.61) to obtain the optimal value OtLqR.

Step 5. Check the following stopping criterion, where €, and €3 are pre-specified
tolerances:

(@) If (Og — OLR) < €y; store the optimal OLR and multipliers {uLf q} and
{ptl itn q} and go to the next subproblem, t 1, by adding the appropriate
future cost cuts.

200

www.manaraa.com



(b) If nosignificant progress can be achieved after re-solving the Lagrangean
LR,old LR

tq -0 q | <

€3 where OtLqR’OMZ is the solution of the Lagrangean Relaxation in the pre-

vious step of the subgradient method, no further effort should be made

to decrease the duality gap of this subproblem in this iteration. Store

the optimal OtLqR and multipliers {uLl q} and { yfnlj?m q} and go to the

next subproblem, ¢t — 1, by adding the appropriate future cost cuts.

relaxation in a successive number of iterations, i.e., if |O

Step 6. If the stopping criteria are not met, update the set of multipliers using the
subgradient method and go back to Step 3.

Oty —Off
& rev 2 rev
Ymem[Lier (Hmit—1,n _Hf:litn )2+Z]'EJ (Hmjt—1,n _Hiijtn)z]

where stepy; =

4.4.4.4 Strengthened Benders cut:
As discussed earlier, depending on the structure and tightness of the MILP prob-

lem, Benders cut can be weak and may require large number of iterations to con-
verge. Generating Lagrangean cuts , on the other hand, requires longer compu-
tational time. To mitigate this challenge, Zou et al. [158] propose another set of
cuts, known as strengthened Benders cut, which is a compromise between Benders
and Lagrangean cuts and does not suffer from potential performance issues of
the two previous cuts. Generation of strengthened Benders cut is similar to the
Lagrangean cut. However, it does not use the subgradient method to adjust the
corresponding multipliers. This cut uses the coefficients obtained from solving the

tirst Lagrangean relaxation after the initialization of the multipliers using LP relax-
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ation shown in (4.64). The strengthened benders cut for problem (4.50) is shown

below:

kt—l > OI{ZIR‘i‘ Z Z,uhli)tnq(ﬂmi,tfl,nq_ mi,tfl,n)“‘ Z Zﬂfnl;tnq(ﬁmj,tfl,nq
meMiel meM jeJ

—Hpjt—1,0) Vg (4.64)
These cuts are at least as tight as the Benders cut and usually can be generated in
less time compared to Lagrangean cuts [158].
4.4.5 Implementing Parallel Processing:
The proposed hybrid decomposition algorithm developed in this study utilizes the
SAA, the enhanced PH, and the ND algorithm in a nested structure. In addition
to this noble algorithmic framework, we develop two different variants of paral-
lelization schemes by utilizing the parallel computing concept. These schemes are
developed with a view to further enhance the overall performance of the nested
decomposition algorithm. The main difference between the conventional algo-
rithm and the parallelized algorithms is that conventional algorithms solve the re-
spective subproblems in series, whereas our proposed parallelization frameworks
are designed to solve the subproblems of our nested hybrid decomposition al-
gorithm in parallel. Essentially, the parallelization is conducted via utilizing the
computers multiprocessing capabilities. Our proposed parallelization schemes are

detailed below.

(i) Scheme 1: The first parallelization scheme applies synchronous paralleliza-
tion technique under the SAA algorithm. Note that in each iteration of the
SAA, |E| replications of problem [IWT(SAA)] are generated. Parallelization
Scheme 1 assigns each of these replications to different available processors
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and solves the subproblems in parallel by utilizing the enhanced PH algo-
rithm which is also hybridized with the ND algorithm. After all the repli-
cations are solved, the solutions are aggregated and the convergence of the
SAA algorithm is evaluated. If the obtained gap is lower than the predefined
threshold limit, then the SAA algorithm is terminated; otherwise, more SAA
replications are generated and the process continues until the SAA is con-
verged to a desired optimality gap. The flow chart for this parallelization
scheme can be seen in Figure 4.3.

(ii) Scheme 2: The second parallelization scheme applies synchronous paral-
lelization technique under the PH algorithm introduced in section 4.4.2. In
each PH iteration 7, the algorithm solves a series of scenario-based subprob-
lems [IWT-PHA (n)]. Utilizing this scheme, each of these scenario-based sub-
problems are dynamically assigned to different available processors which
are finally collected and aggregated upon solution. These aggregated solu-
tions are then utilized to check the convergence of the PH algorithm. If the
algorithm converges, the corresponding first-stage solutions are then fixed
and evaluated under a large sample space in SAA to obtain the upper bound
for the overall problem.The process continues until the SAA algorithm pro-
vides a solution of the desired quality. The flow chart for this parallelization
scheme can be seen in Figure 4.4.

4.5 Experimental Results

This section presents a real-life case study and the computational performance in
solving model [IWT] using the proposed nested decomposition algorithm. We use
the inland waterway ports located in four southeast U.S. states, namely, Arkansas
(AR), Louisiana (LA), Mississippi (MS), and Tennessee (TN) as a testing ground to
visualize and validate the modeling results. A number of managerial insights are
drawn that casts valuable insights on designing a robust inland waterway

transportation network. The model and all the solution approaches are coded in
python 2.7 on a desktop with Intel Core i7 3.6 GHz processor and 32.0 GB RAM.

Optimization solver Gurobi Optimizer 6.5% is used throughout the solution pro-

2 Available from: http://www.gurobi .com/
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cess. Following subsections provides a brief description of the network used in
this study, reports the computational performance of the proposed solution algo-
rithms, and summarizes the managerial insights obtained from the case study.
4.5.1 Data Description

This study considers a total of 13 inland waterway ports which are located along-
side Mississippi River. Among selected ports, the Port of Rosedale, Port of Greenville,
Port of Vicksburg, Port of Natchez, and Port of Yazoo County are located in Missis-
sippi; the Port of Geismar Louisiana, Port of Greater Baton Rouge, Port of South
Louisiana, and Port of Gramercy are located in Louisiana; Port of Little Rock is
located in Arkansas; and the Port of Memphis, Pemiscot County Port, and New
Madrid County Port are located in Tennessee state. The geographical location of
these selected ports can be visualized in Figure 4.5. All these ports are connected
with each other via the Mississippi River. The Port of Claiborne County is op-
erationally unavialble; therefore, we exclude this port from consideration in our
study [85]. Additionally, in this study we consider four commodities, rice, corn,
woodchips, and fertilizer, to be transported from the origin ports to the destina-
tion ports. In next few subsections we added the detailed information about the
supply and demand distribution, transportation cost, and water level fluctuation

pertaining to this test region.

4.5.1.1 Supply and demand data:

In this study we consider four commodities, rice, corn, woodchips, and fertilizer,

to be transported from the origin ports to the destination ports. The suppliers of
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Figure 4.5

Inland waterway port locations along the Mississippi River
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these commodities are selected in such a way that they locate within a radius of 60
miles from any of the selected ports. The supply availability information for each
port, @i, are then aggregated by considering the minimum distance between
suppliers to all origin ports. The supply availability of the selected products (in
1,000 tons) can be seen in Figure 4.6. Each year the test region produces 6.3 and
113.8 million tons of rice and corn from 42 and 59 different counties, respectively
[135]. On the other hand, the woodchips and fertilizer have an yearly availability
of 8.3 and 0.4 million tons which are supplied from 31 and 22 different counties
to ports, respectively [136, 137]. Note that the supply of the selected products, ex-
cept fertilizer, are highly seasonal in nature. Rice becomes available only between
August and October of each year whereas corn is harvested only between mid-
July to early December of each year [133]. Likewise, woodchips remain available
year-round except three months during the winter (December to February) [133].
This study considers five ports along the Mississippi River which can be used
as destination ports to satisfy the demand of 43 industries located nearby the ports.
The yearly demand distribution of these ports are shown in Figure 4.7. The annual
demand of rice, corn, woodchips, and fertilizers in our testing region are 3.8, 68.3,

8.3, and 0.37 million tons, respectively [135, 137].

4.5.1.2 Transportation cost:

The towboats used in the Mississippi River are capable of carrying up to 15 barges
[138]; therefore, we set 0z = 15. The fixed cost of using a towboat (1s;) is set to

be as $244.38 [138]. The unit commodity transportation cost (c,psijt) between each
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source-destination pair is set to be as $0.017 /mile/ton [48]. All costs are adjusted

based on the 2019 dollars value.

4.5.1.3 Water level fluctuations:

The Mississippi River experiences significant water level fluctuations in different
time period of the year. A demonstration of water level fluctuations between the
Port of Rosedale and Port of Greenville from July, 2016 to June, 2017 is provided
in Figure 4.8 [139]. Each point on Figure 4.8 indicates the water stage of the Mis-
sissippi River on a weekly basis. It can be observed from the figure that the water
level drops between mid-August till the end of December while reaches to the
maximum during the first three weeks in October. Other than these specific time
periods, the water stage generally remains stable for the rest of the year (above
14.2 feet), except in May when the level reaches to 42 feet, which is higher than the

flood level.

4.5.2 Performance Evaluation of the Algorithms

This subsection presents our computational experiences in solving model [IWT]
using the algorithms presented in Section 2.4. To test the performance of the so-
lution algorithms, we first vary |Z|, | 7|, |M]|,|S|, and | T | to generate 9 different
problem instances. The description of these instances are summarized in Table 4.1.
We use the following criteria to terminate the algorithms: (i) the optimality gap

(i.e., € = [UB — LB|/UB) falls below a threshold value (e.g., € = 1.0%); (ii) the
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Demonstration of water level fluctuations between Port of Rosedale and Port of

Greenville from July, 2016 to June, 2017 [139]

maximum time limit (#"#*) is reached (e.g., t"** = 10,800 CPU seconds); or (iii)
the maximum iteration limit (3"*%*) is reached (e.g., g""** = 100). To help the read-
ers follow our solution approaches, the following notations are used to represent

each particular variants of the proposed algorithms.

e PHA: Progressive Hedging Algorithm.

e PHA+HR: Enhanced Progressive Hedging Algorithm with application of
Heuristics strategies discussed in Section 4.4.3.2.

e PHA+HR+SB:Enhanced Progressive Hedging Algorithm with application
of both Heuristics strategies and Scenario Bundling techniques discussed in
Sections 4.4.3.2 and 4.4.3.3.

e HD: Hybrid decomposition algorithm combining Sample Average Approxi-
mation and Enhanced Progressive Hedging Algorithm (PHA+HR).

e HND-I: Hybrid decomposition algorithm combining Sample Average Ap-
proximation, Enhanced Progressive Hedging Algorithm (PHA+HR), and ba-
sic Nested Decomposition algorithm.
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e HND-II: Hybrid decomposition algorithm combining Sample Average Ap-
proximation, Enhanced Progressive Hedging Algorithm (PHA+HR), and En-
hanced Nested Decomposition algorithm with enhancements discussed in
Sections 4.4.4.1-4.4.4.2.

e HND-III: Hybrid decomposition algorithm combining Sample Average Ap-
proximation, Enhanced Progressive Hedging Algorithm (PHA+HR), and En-
hanced Nested Decomposition algorithm with enhancements discussed in
Sections 4.4.4.1-4.4.4.3.

e HND-IV: Hybrid decomposition algorithm combining Sample Average Ap-
proximation, Enhanced Progressive Hedging Algorithm (PHA+HR), and En-
hanced Nested Decomposition algorithm with enhancements discussed in
Sections 4.4.4.1-4.4.4.4.

e PS-I: Parallelization scheme I discussed in Section 4.4.5.
o PS-II: Parallelization scheme II discussed in Section 4.4.5.

e HND-IV + PS-I: Parallelization scheme I is applied over hybrid algorithm
HND-IV.

e HND-IV + PS-II: Parallelization scheme II is applied over hybrid algorithm
HND-IV.

The first two sets of experiments investigate the computational performance
between Gurobi and different variants of the Progressive Hedging algorithm in
solving model [IWT] under scenario sizes N = 20 and 30. The computational re-
sults obtained from this set of experiments are summarized in Table 4.2 and 4.3.
Note that while reporting the computational results in Tables 4.2 and 4.3 and all
the following tables, the algorithm that solves a particular instance within the pre-
specified optimality gap and in the smallest running time is highlighted. However,
if such a quality solution cannot be obtained within the predefined time or itera-
tion limit, we highlight the algorithm with the smallest optimality gap. The key

observations obtained from these two tables are summarized below.
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e Results in Table 4.2 indicate that Gurobi is only able to solve the first two out
of 9 problem instances by obeying the pre-specified termination criteria. In
Instance 4, Gurobi ends with a large optimality gap within the time limit. For
the remaining instances (instances 3, 5-9), Gurobi fails to provide a feasible
solution within the time limit. With the PHA, only instances 1 and 4 are now
solvable by obeying the pre-specified termination criteria. However, it is re-
alized that the PHA is capable of providing high quality feasible solutions
(on average 2.54%) within the time limit for most of the problem instances
except instances 6 and 9. The performance of the PHA slightly improves with
the incorporation of both global and local heuristics (PHA+HR) and scenario
bundling techniques (PHA+HR+SB). Among all variants of the PHA, algo-
rithm PHA+HR+SB provides the lower optimality gap (on average 1.17%)
with an average running time of 9,292 CPU seconds.

e Table 4.3 shows the results for Gurobi and different variants of the PHA in
solving model [IWT] with N =30 scenarios. Gurobi, in this specific case, ex-
periences even more difficulties in solving the selected instances. Gurobi is
now able to solve only 1 instance, compared to 2 in N =20, by obeying the
pre-specified termination criteria. With the PHA, high quality feasible solu-
tions can be obtained in a number of instances (6/9 instances). Even though
no additional instances can be solved within the time limit, the enhanced
variant of the PHA, namely, PHA+HR and PHA+HR+SB approaches, are
capable of marginally dropping the optimality gap and running time over
PHA. In overall, algorithm PHA+HR+SB demonstrates the superior com-
putational performance (with respect to both optimality gap and running

time) over other techniques investigated in Table 4.3 in solving model [TWT]
Thendextityeh @fuexestéthendtatesds. the computational performance of the pro-

posed hybrid algorithms (HD, HND-I, HND-II, HND-III, and HND-IV) that are
generated through different combinations of SAA, PHA, and ND algorithms along
with their various enhancement techniques. To run the experiments, we set N =
20 and N’ = 200. Table 4.4 summarizes the computational performance of these
hybrid algorithms with Gurobi. Results in Table 4.4 clearly shows that all hybrid
algorithms, namely, HD, HND-I, HND-II, HND-III, and HND-IV, demonstrate
higher computational performance over Gurobi. Among different enhancement

techniques, algorithm HND-IV provides the best solution with respect to run-
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ning time and optimality gap. However, algorithm HND-IV fails to solve 7 out
of 9 problem instances by obeying the pre-specified termination criteria and left
with an average optimality gap of 8.09%. Therefore, we employ paralellization
schemes PS-I and PS-II to further enhance the computational performance of this
algorithm. The results are reported in Table 4.5. The key findings from these com-
putational results are summarized below:

e The results in Table 4.5 show that incorporating Parallelization scheme I (PS-
I algorithm) in HND-IV significantly drops the optimality gap and running
time of the algorithm. On average, algorithm HND-IV + PS-I drops the run-
ning time by 53.15% over algorithm HND-IV while the reduction in running
time is achieved with an average optimality gap of 0.55%. Except the last in-
stance, this algorithm successfully solves all the problem instances reported
in Table 4.1 by obeying the pre-specified termination criteria.

e For the case with algorithm HND-IV + PS-II in Table 4.5, we also observe
notable improvements for most of the instances compared to the basic HND-
IV algorithm. The average running time of this algorithm is now dropped
by 35.1% over algorithm HND-IV. Note that this improvement in running
time is achieved with an average optimality gap of 0.92%. Despite these
notable improvements, algorithm HND-IV + PS-II is still unable to solve
three instances (instance 6, 8, and 9) by obeying the pre-specified termination
criteria.

e Our final observation is made between algorithms HND-IV + PS-I and HND-
IV + PS-II. Clearly, algorithm HND-IV + PS-I outperforms algorithm HND-
IV + PS-II with respect to both running time and optimality gap in most of
the instances, except three instances (instance 2, 4, and 9). To further demon-
strate the computational benefit of using the HND-IV + PS-I algorithm, we
run another set of experiments by varying different water level (@;j,) and
supply (¢mitw) scenarios as shown in Table 4.6. Note that the results in Table
4.6 are demonstrated for instance 7 only which represents the base case sce-
nario. The results clearly indicate that even though with an increase in @;j,
and ¢yit, scenarios, the running time for both the parallelization schemes
increases, algorithm HND-IV + PS-I still consistently produces high quality
solutions within our tested experimental range.
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Algorithm 1: Progressive Hedging Algorithm

e . 0
Initialize, r <— 1, ¢, {g,rnbsijm}VmeM,beB,seS,ieI,jeJi,teT,neN — 0,V V7,

{BLijentvses (ij)e @) ieT nen < 0,07 « 6
terminate < false
while (terminate = false) do
forn=1to N
Solve [IWT-PHA(n)] and obtain {Y] , . itn PmeMpeBses,icT jeg reT and
T e
end for
Calculate the consensus parameter:
Vit

Sl]t NZ S”t,vs;eS( e, TJ)teT

g TN Vipsijins VM € M,be B,seS,ielje JteT

if (r > 1) then
Update the largangian parameter:
1 1
é:nhsijifn A gmhsqtn T ( mbsijtn Yr];lhsqt)
VmeM,beB,seS,icZ,jeJ teT

— Bl oY

sijin sijtn sijtn Ysrijt)
Vse S, (i,j) e (Z,T),teT
Update the penalty parameter:
8 «— A landA>1;60"«— A0 landA>1

end if
if ({]Y;, mbsijtn mb51]t| +1Y] sijt sri]'t|}VmeM,heB,seS,(i,j)e(Z,J),teT < ¢€) then

terminate < true
end if

r<—r+1

end while

216

www.manharaa.com



Table 4.1

Problem size and test instances

Instance Binary Continuous Total No. of
zr g M BEISE (T
No. variables variables variables  constraints
1 4 3 2 15 6 12 26,784 26,256 53,040 69,372
Small 2 4 3 3 15 8 24 105,984 104,688 210,672 252,672
3 4 3 4 15 10 36 263,520 261,216 524,736 601,740
4 8 4 2 15 6 12 71,424 69,696 141,120 184,464
Medium 5 8 4 3 15 8 24 282,624 278,208 560,832 672,384
6 8 4 4 15 10 36 702,720 694,656 1,397,376 1,602,000
7 12 5 2 15 6 12 133,920 130,416 264,336 345,348
Large 8 12 5 3 15 8 24 529,920 520,848 1,050,768 1,259,328
9 12 5 4 15 10 36 1,317,600 1,300,896 2,618,496 3,001,140
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Table 4.2

Experimental result for basic and enhanced PHA algorithm (N=20)

Gurobi PHA PHA+HR PHA+HR+SB

Instance t(sec) €(%) t(sec) €(%) r t(sec) (%) r t(sec) €(%)

1 954 011 3246 08 46 3,198 085 45 1364 051 12
2 8987 027 10,800 168 31 10,800 147 30 10,574 091 9
3 TL! - 10,800 426 11 10,800 337 10 10,800 2.03 2
4 10,800 214 10463 041 33 10,147 0.79 31 9956 0.62 21
5 TL - 10,800 419 9 10800 322 9 10,800 1.69 3
6 TL - TL - - TL - - TL - -
7 TL - 10800 212 15 10,800 136 14 10,756 094 5
8 TL - 10,800 435 6 10,800 3.31 6 10,800 149 1
9 TL - OOM?2 - - OOM - - TL - -

Average 6913 717 9,672 254 2157 9,620 205 2071 9292 117 757

ITL: No feasible solution within time limit

200M: Out of memory
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Table 4.3

Experimental result for basic and enhanced PHA algorithm (N=30)

Gurobi PHA PHA+HR PHA+HR+SB

Instance f(sec) €(%) t(sec) €(%) r t(sec) €(%) r t(sec) €(%) r

1 852 025 5764 0.9 44 5447  0.81 43 2,165 091 11
2 TL - 10,800 1.83 20 10,800 1.28 19 10671 0.84 5
3 TL - 10,800 5.34 6 10,800 4.63 6 10,800 2.41 2
4 10,800 56.66 10,800 4.56 25 10,800 3.76 23 10,800 142 14
5 TL - 10,800 5.37 7 10,800 4.31 6 10,800  3.08 2
6 TL - OOM - - OOM - - TL - -
7 TL - 10,800 4.88 11 10,800 3.94 10 10,800 1.97 3
8 TL - OOM - - OOM - - TL - -
9 OOM - OOM - - OOM - - OOM - -

Average 5826 2845 9960 381 1866 9907 312 1783 9,339 177 6.16
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Table 4.6

Computational performance of the proposed parallelization schemes under

different water level (w;j1,) and supply (¢mitw) Scenarios

HND-IV + PS-1 HND-IV + PS-1I

Scenario  t(sec) €(%) r t(sec) €(%) r

-40% 1,897 039 4 6564 022 5
-20% 2,798 041 6 7958 029 6
Base Wi, 4471 025 9 9378 031 7
20% 4519 029 9 9659 046 7

40% 4963 0.66 10 10,800 1.62 8

-40% 2841 023 6 7,797 028 6
-20% 3409 037 7 9190 019 7
Base i 4471 025 9 9378 031 7
20% 5491 054 11 10800 237 9

40% 6,248 032 13 10,723 098 8

4.5.3 Real-life Case Study
4.5.3.1 Impact of water level fluctuation (w;;;,) on overall system performance

This set of experiments investigate the impact of water level fluctuation (@;jt,)
on the overall system performance. To run the experiments, we consider four
different water level scenarios by varying @;j;, by £20% and +40%. Figure 4.9
summarizes the key results from this set of experiments. In Figure 4.9 and the

following figures, t = 1 stands for a representative day from January, and the fol-
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lowing months are represented in an ascending order which are ended at ¢t = 12
which is a representative day in December. The experimental results indicate that
with 20% and 40% increase in mean ;j,, the overall barge usage (Y;psijt) drops
by approximately 10.9% and 20.1%, respectively, from the base case scenario. On
the other hand, when the mean w;j;, is dropped by 20% and 40%, then the overall
barge usage is increased by 21% and 47%, respectively, from the base case sce-
nario. This is due to the fact that when the mean w;;;, decreases, more barges are
now required with less loads compared to their design capacities to avoid being
stuck in any part of the waterway. Note that the peak barge usage is observed
in October (+ = 10) when the water level drops to it's minimum. Additionally,
Figure 4.9 shows that the water level reduction causes the barge to towboat ra-
tio (Ymbsi]-t/ Ysijt) to increase. With a 40% drop in @jjsw, Ymupsiji/ Ysijt reaches to a

maximum of 11 barges per towboat in October and November (t = 10 and 11).
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Figure 4.9

Impact of @;j1, changes on barge selection (Y45j:) and barge to towboat ratio

(Ymbsijt/Ysijt)

4.5.3.2 Impact of commodity supply (¢,,i;,) changes on overall system perfor-
mance

The next set of experiments study the impact of stochastic nature of the commod-
ity supply (¢itw) availability on the overall system performance. To run the ex-
periments, we consider four different supply scenarios by varying mean ¢,,;,, by
£20% and £40%. Results in Figure 4.10 show that when the mean ¢,,;;,, increases
by 20% and 40%, then the barge selection (Y},s;j:) decisions are increased by 8%
and 18%, respectively, from the base case scenario. On the other hand, when the
mean ¢r, drops by 20% and 40%, then the barge selection (Y)sij) decisions are
dropped by 11% and 22%, respectively, from the base case scenario. Similar to

the previous experiment, the peak barge usage is observed in October (t = 10)
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when the water level drop is the minimum. Figure 4.10(b) illustrates that with
an increase in mean ¢y,;, by 40%, on average 3 more barges are now required to
be connected with a towboat during the peak demand season (¢t = 10). In Figure
4.10(c), we observe that the unsatisfied demand (U,;,;) reaches to +45% and +86%
with the reduction in ¢,,i;, by 20% and 40%, respectively. Finally, we observe that
the overall inventory storage increases with an increase in mean ¢,,;;., (see Figure
4.10(d)). It is interesting to note that in order to avoid the peak water level drop
season (October) and to satisfy the customer demand, the system utilizes a high
storage of commodities in the ports on September (t = 9).

4.6 Conclusion and Future Research Directions

This paper proposes a two-stage stochastic programming model to design and
manage an inland waterway transportation network with appropriate considera-
tions of the stochasticity associated with commodity supply and water level fluc-
tuations. A parallelized hybrid decomposition algorithm is introduced to solve the
proposed optimization model. Computational results indicate that the proposed
algorithm is capable of producing high quality solutions consistently in a timely
manner. In order to visualize and validate the modeling results, we demonstrate
a real-life case study by utilizing few inland waterway ports from the down Mis-
sissippi River. A number of managerial insights are drawn from the numerical ex-
periments, including the impact of stochastic commodity supply and water level

fluctuations on the inland waterway port operations.
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To summarize, the major contributions of this study include: (i) proposing
a multi-commodity, multi-time period two-stage stochastic mixed-integer linear
programming model to minimize the inland waterway port operations under stochas-
tic commodity supply and water level fluctuations; (ii) introducing and testing an
efficient hybrid decomposition algorithm, combining Sample Average Approxi-
mation, and an enhanced Progressive Hedging and Nested Decomposition algo-
rithm, to efficiently solve realistic-size network design problems in a reasonable
timeframe; (iii) developing and testing different parallelization schemes to paral-
lelize the proposed hybrid decomposition algorithm; and (iv) obtaining manage-
rial insights from a real-life case study. Note that the proposed methodologies can
be adopted to efficiently solve other stochastic optimization problems. We believe
the managerial insights obtained from this study will help policy makers to de-
sign and manage a robust and cost-efficient inland waterway-based supply chain
network under uncertainty.

This study opens up numerous avenues for future research. Detailed consid-
erations of barge and towboat routing, scheduling, and re-positioning issues can
be made to analyze the impact of these issues on the inland waterway port opera-
tions. Further, the impact of inland waterway port operations under both natural
(e.g., hurricane, tornado) and/or human-induced (e.g., cyber attack) disruptions

can also be investigated. Future studies will address these issues.
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CHAPTER 5
A BENDER'’S BASED NESTED DECOMPOSITION ALGORITHM TO SOLVE A
STOCHASTIC INLAND WATERWAY PORT MANAGEMENT PROBLEM

CONSIDERING PERISHABLE PRODUCT

5.1 Introduction

Inland waterway ports are the hearts of inland waterway transportation. While
ensuring the most cost efficient and environmentally friendly means of transporta-
tion, these ports support the access to the inland waterways and play a critical
role in nations overall waterway transportation system. In the United States, these
ports contribute about 15 billion dollars to the country’s total GDP (Gross Domes-
tic Product) along with offering above 250, 000 employment opportunities annu-
ally [89]. Additionally, these ports play a critical role in industrial and agricultural
development of remote rural areas [84]. However, despite of their substantial po-
tentiality, numerous factors, such as, water level fluctuation, dredging issues, con-
gestion, delays caused by scheduled and unscheduled closures of locks, and aging
infrastructure are imposing substantial threats to their overall productivity [140].
Also, it is worth mentioning that inland waterway transportation system is uti-

lized to transport mostly perishable products such as corn and soybeans. There-
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fore, the combined impact of these aforementioned factors can lead to a significant
commodity loss at ports that might discourage the potential users of this network.

A number of features of Inland waterway ports make them well distinguish-
able from the seaports. To mention a few, these ports are generally located pri-
marily near smaller bodies of water, handle barge traffic drafting upto 9 feet only,
and handle smaller counts of larger users and a large number of smaller users
[84]. Additionally, the varying precipitation levels in different periods of a year
causes severe fluctuations in the active water level at port channels and any part
of the waterway connecting two inland waterway ports [139, 94, 90]. Depending
on the intensity of this fluctuation, disruptions such as droughts and floods can be
experienced that may even cease port operations for a prolonged period of time.
Another distinguishing property of inland waterway ports is that these ports han-
dle high volume of perishable products that are seasonal in nature and can sig-
nificantly deteriorate with the progression of time. Therefore, this perishability
issue coupled with the stochastic water-level fluctuations, and highly uncertain
supply impose an unique challenge which restrict the optimization models avail-
able in the literature for the maritime transportation to be directly applicable for
the inland waterway ports. Therefore, in order to ensure long term sustainment of
the inland waterway ports, sophisticated optimization models need to be devel-
oped that best capture the unique characteristics of this cost efficient, reliable, and

environmentally-friendly transportation sector.
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Multiple research have been conducted to date that develop optimization mod-
els to address wide variant of seaport-related problems, such as ship routing and
scheduling [29, 68], inventory routing [5], berth allocation and scheduling [27,
141], empty container re-positioning [20], sailing speed optimization [73, 141],
bunker consumption [145], emission consideration [141], and disruption [43, 126].
Some researchers develop simulation models to address similar problems (e.g.,
[118, 125, 121, 44]). However, compared to the seaport literature, inland water-
way ports did not receive much attention from the research community. A few
studies has been conducted to characterize and model the specifics of deep draft
inland ports, capable of handling container cargos and ships; however, almost no
research attempts has been made that specifically considers the shallow draft inland
ports! related issues. Considering their remarkable contributions to the overall
transportation system and the economy, creating better understanding of the shal-
low draft inland waterway ports is imperative in order to successfully design and
manage a sound and efficient inland waterway transportation network.

To fulfill this gap, this study proposes a mathematical model to capture the
prevalent issues related to inland waterway port (e.g., waterlevel fluctuations,
barge/towboat assignments, inventory decisions, and port delays) and combine
them under the same decision making framework that magnifies their impacts

on designing and managing a sound, robust inland waterway transportation net-

IThe ports that is unable to handle barges/vessels drafting more than 9 feet are known as
shallow draft inland ports. Deep draft inland ports, on the other hand, are the ones that can handle
barges/vessels drafting more than 9 feet.
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work. We propose a capacitated, multi-commodity, multi-period, two-stage stochas-
tic mixed-integer linear programming model that jointly optimizes trip-wise barge
and towboat assignment decisions along with crucial supply chain decisions (e.g.,
inventory management, transportation decisions) under uncertainty in such a way
that the overall system cost can be minimized. Our proposed model efficiently
captures a number of realistic issues that appropriately characterize the shallow
draft inland waterway port operations, such as towboat and barge availability,
weight and volumetric capacity restriction of barges, dredging issues, shelf life
of commodities, product mix restrictions, storage restrictions at ports, trip re-
strictions between origin-destination ports, congestion issues, delays in locks and
dams, and many others.

Our proposed mathematical model is an extension of the traditional fixed charged,
uncapacitated network flow problem which is already known to be an N/P-hard
problem [74]. Therefore, to cope with the computational challenge in solving this
model we develop a highly customized nested decomposition algorithm. This
algorithm combines enhanced Benders decomposition algorithm under Sample
Average Approximation framework to effectively solve the large instances of our
proposed model within a reasonable time frame.

Apart from proposing the mathematical model and solution approaches, we
demonstrate a real life application of our proposed model considering the inland
waterway transportation network along the lower Mississippi river. The outcome

of this study provides a number of managerial insights, such as the impact of wa-
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ter level fluctuations on towboat and barge selection, and impact of commodity
deterioration rate on overall system performance, which can effectively aid deci-
sion makers to design a reliable and cost-efficient shallow draft inland waterway
transportation network under umcer’cain’cy2

The remainder of this paper is organized as follows. Section 5.2 provides a
comprehensive review the related works. In Section 5.3 the problem statement
and the proposed mathematical model formulation is introduced. The decompo-
sition algorithms used to solve our proposed model are outlined in Section 5.4.
Section 5.5 presents a real life case study and summarizes the key managerial in-
sights and the computational performances of the proposed algorithms obtained
by solving the case study. Section 5.6 concludes the study with discussing some

future research avenues.

5.2 Literature review

The deep draft inland waterway ports have been gaining the focus from the re-
search community over several years. Different researchers have studied multiple
realistic issues such as barge and towboat routing and repositioning, berth alloca-
tion, port disruption, and delays in locks and dams related to deep-draft inland
waterway ports. This section provides a comprehensive overview of these stud-
ies, highlights the research gap, and explains the key contributions of our work

compared to the existing literature.

2This article has recently been accepted in International Journal of Production Economics [2].
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Alike seaports, inland waterway ports also experience berth allocation prob-
lem. Few researchers have studied this problem for deep-draft inland waterway
ports. For example, Grubivsic et al. [50] solve a berth layout design problem with
an objective to minimize the overall vessel waiting time at deep-draft inland wa-
terway ports. Depuy et al.[30] consider fleet location capacity, the total volume of
barges, and average handling time to ensure optimal berth allocation. Arango et
al.[11] adopted a combined simulation-optimization approach to solve this prob-
lem. Another research develops two mathematical models for modeling the berth
allocation problem and adopts a tree search procedure to solve these models [51].

Another research scheme investigates the cascading impcats of lock and dam
delays on the inland waterway transportation network including deep draft in-
land ports. Ting and Schonfeld [130] use a simulation-optimization framework to
determine the optimal capacity for lock and dams so that the costs associated with
the tow delays can be minimized. Similarly, the research by Wang and Schonfeld
[147] use a combined simulation-optimization approach to determine an optimal
strategy to schedule the investment decisions for lock reconstruction and rehabili-
tation. Ting and Schonfeld [129] develop an integrated tow control algorithm that
can reduce the tow delays associated with a series of locks.

Barge routing and empty container repositioning problems are another preva-
lent areas in deep draft inland waterway port research. These problems are gen-
erally addressed together in the existing literature. Braekers et al. [20] solves the

barge routing and empty container repositioning problem between a seaport and
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few hinterland ports. Later, this research has been extended to include the vessel
capacity and round trip service frequency [19]. Marass [76] develops a mixed-
integer linear programming (MILP) model to optimize the the transport routes of
chartered container ships or tows for an inland waterway port. Davidovic et al.
[28] discuss a barge and container ship routing problem and propose a guided lo-
cal search technique to solve the problem. Most recently, An et al. [9] proposed
a MINLP model to solve the empty container repositioning problem for the ship-
ping network.

Different natural (e.g., hurricane, tornado) or human-induced (e.g., cyber-attack)
disasters may interrupt or cease the port operations for an extended period of time
[54, 57] and impact the overall supply chain [7, 55, 53]. Realizing this situation, a
few studies develops models to measure the resiliency of a deep draft inland wa-
terway port. Among those studies, Baroud et al. [13] determine the important
waterway links and the precedence of link recovery in case of a disaster by con-
vering different stochastic resilience-based component importance measures into
an optimization model. Oztanriseven and Nachtman [87] adopted a simulation
approach to determine the potential economic impacts of inland waterways dis-
ruption response. This research uses the McClellan-Kerr Arkansas River naviga-
tion system as a testbed to visualize and validate the simulation results. Pant et
al. [103] propose a dynamic, multi-regional interdependency model to investigate
the impact of disruptions on the waterway networks, including both ports and

waterway links. Another study [59] propose a Bayesian network based approach
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to model the infrastructure resilience of an inland waterway port. Other related
research in this area include port-specific economic analysis [4, 87, 151, 67], deter-
mining optimal dredging schedule and investment decisions [86, 113, 18], investi-
gating the efficiency of inland waterway container terminals [152], tug scheduling
between seaport to inland ports [39, 45, 157], and carbon emission considerations
[155,71, 25].

Different from the studies mentioned above, our study considers different shal-
low draft inland waterway port related issues such as optimal transportation of
perishable products considering their shelf life, waterlevel fluctuation, delay in
locks and dams, optimal towboat and barge assignment, barge availability and
maintenance considerations under uncertainty. Some existing studies consider
shallow draft inland waterway ports as a tier while designing a different supply
chain networks such as biomass supply chain (e.g., [107, 81, 80]), coal supply chain
(e.g., [35,47,62]), grain supply chain (e.g., [88, 10, 31]), and many others. However,
very few other studies [99, 96, 98, 97] solely focused on the shallow draft inland
waterway ports, where the [99] and [96] characterize the shallow draft inland wa-
terway ports and demonstrate methodologies to analyzes the competitiveness of a
given port among a set ports. The next studies [98, 97] consider few shallow draft
inland waterway port related issues and develop MILP model to optimize the re-
source usage, and barge and towboat assignment decisions under a deterministic
setting. The shelf life of commodities and stochasticity associated with waterlevel

fluctuation and commodity availability were not considered in that model. Our
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study fills this literature gap by considering all these crucial factors (e.g., shelf life
of commodities, stochastic waterlevel fluctuation, and uncertain commodity avail-
ability) along with capturing the true characteristics of the inland waterway trans-
portation. Few studies [37, 93, 24, 114] consider the water level fluctuation issues
for maritime ports. However, in the case of inland waterway transportation, not
much research attempts are observed that penetrate on this specific issue. Further,
the commodity loss due to the limited shelf life of agricultural commodities is also
ignored in the current literature the impact of which can be very significant on the
optimal transportation and resource allocation decisions at ports under uncertain
supply conditions. This signifies that the proper modeling efforts, that capture the
aforementioned realistic features, need to be made in order to design a reliable

inland waterway transportation network.

5.3 Problem Description and Model Formulation

This section presents a capacitated, multicommodity, multi-time period, two-stage,
stochastic programming model formulation to efficiently design and manage an
inland waterway transportation-based logistics network considering the stochas-
tic, time-variant nature of commodity supply and water-level fluctuations. The
model is effectively designed to capture the possible loss in perishable commodi-
ties governed by prolonged storage and delayed transportation. Let us consider an
inland waterway transportation network G = (D, A) where D be the set of nodes

and A denotes the set of arcs that connects different tiers of the network. Set D
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consists of a set of origin ports Z, from which commodities are shipped and a set
of destination ports J that receive and process the shipped commodities. Figure
5.1 illustrates a simplified inland waterway transportation network consisting of

two origin ports and three destination ports.

Network G transports a set of agricultural commodities M = {1,2,3,..., M}
through its two tiers (origin ports and destination ports) over a predetermined set
of time periods 7 = {1,2,3, ..., T}. Subsets 7 and J; are introduced in our model
where, set Z; consists of the subset of origin ports connected to port j € J and J;
represents the subset of destination ports connected to origin port i € Z. Further,
we introduce the scenario set w € () that stands for different commodity supply
and water-level fluctuation scenarios. Given p,, as the probability of any particular
realization, the sum of the all realizations of any sample space () should be 1, i.e.,
Ywen Pw = 1.

Inland waterway transportation network primarily transports agricultural com-
modities such as corn, rice, and soybean the supply of which are highly seasonal
in nature. For instance, in the U.S. corn is harvested between mid-July to late
November of each calander year [133]. Moreover, knowing the seasonality asso-
ciated with commodity harvesting, their estimated supply availability by season
are also not same for each year. In fact, this amount is highly stochastic in nature.
Therefore, to realistically capture this issue we assume that each origin porti € 7
is provided with a stochastic amount ¢,,j;,, of commodity m € M at time period
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Ilustration of a inland waterway transportation network
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t € 7 under scenario w € (). These commodities will be transported through
different arcs A of network G and used to serve the demand at destination ports
j € J. The inland waterway commodity transportation is done by the association
of barges and towboats. Let B = {1,2,3,...,B} and S = {1,2,3, ...,S} respectively
represent the set of barges and the set of towboats that can be used to transport
commodities between any port pair (i,j) € (Z,J). Set S is a ordered set where
the first element of the set, i.e., towboat 1 in set S represents the least powerful
towboat and towboat S be the most powerful one. Based on their capabilities we
denote 6/ Js to be the maximum/minimum number of barges that can/should
be carried out by any particular towboat s € S. In any time period ¢, the fixed
cost of using any towboat s € S and the loading and unloading cost for commod-
ity m € M to barge b € B is denoted as ¢5; and 17,,,;. Further, we consider the
commodity carrying capacity of barges through two different parameters w;, and
v where the former one represent the weight carrying capacity and the later one
stands for volumetric capacity of barge b, respectively. The unit transportation
cost of commodity m € M using barge b € B connected to towboat s € S of
trip n € Njj along arc (i,j) € (Z,J) at time period t € T that was procured at
time period T € T is denoted by cypsnijr+ where T < t. Additionally to account
for the periodic maintenance requirements for barges and towboats, two binary
availability parameters a,;; and ag;; are defined that denote the availability of any

barge and towboat in any port i at any particular time period ¢, respectively.
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Each porti € Z7|J J is assumed to have inventory, restricted by a maximum
commodity storage capacity of h;. The inventory holding cost for commodity
m € Min porti € Z|JJ between time periods T € 7 and t € T under sce-
nario w € () is denoted as h,,;r; (T < t). We also capture the deterioration rate
of carrying commodity m € M in any port inventory between two consecutive
time periods T € 7 and t € 7 by introducing parameter a;,r;. The active weight
capacity of any barge between any specific port pairs at any given time t € T
is defined using parameters wijsw, Wjtw, and wjji,, where wj, and wj, denote
the maximum weight carrying capacity at port channel i € ZJ J at time period
t € T under scenario w € () and wjjy, is the allowable weight that can be carried
through the waterway between the same port pair (i,j) € (Z,J) at time period
t € T under scenario w € (). Essentially, the waterway depth at port channel or
throughout the waterbody may vary in different time periods of the year depend-
ing upon the amount of sediment, silt, or mud accumulated in the waterbed. If
such accumulation is too intense at any portion of the waterway (e.g., near ports
or between two connecting ports), it increases the height of the waterbed resulting
in a decrease in the waterdepth. This waterdepth reduction can sometimes be too
intense that it seriously impacts the transportation of shallow draft water vessels
through the waterway. Resultantly, the barges need to carry commodities below to
their designed weight carrying capacity of w, to avoid being stuck at any point of
their navigational waterway. Therefore, the maximum effective weight that a barge

m € M can carry under this restriction would be the minimum weight between
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the weight capacity near origin and destination ports, namely, w;;, and wj,, and
the channel between each origin-destination ports (i,j) € (Z,J), namely, Wijtcor
i.e., min{Wij;, Wy } where Wjj, 1= min{Wiy,, Wijtw, Wit }- Considering the unpre-
dictability of accurately estimating this restriction, we consider w;;;, as a stochastic
parameter in our proposed model formulation. Further, we define a set of possible
trips along arc (i,j) € (Z, J) as Njj. As discussed earlier, due to stochastic weight
carrying capacity of barges, in certain time periods more trips are needed to sup-
port commodity transportation. This is captured through the parameter 7;;; that
represents the number of possible trips between each source-destination ports. Fi-
nally, we assume that the commodity demand at destination ports, denoted by
djt, can be satisfied either through barge transportation from the origin ports or
via an external source by paying a unit penalty cost of 77,,;;. We now summarize
the following notations for our proposed mathematical model formulation.

Sets:

e I: set of origin ports,i € Z

J: set of destination ports, j € J

M: set of commodities, m € M

S: set of towboats,s € S

B: set of barges, b € B

Nij: set of trips along arc (i) € (Z,J),n € Nj;

T set of time periods, t € T

Z;: set of origin ports connected to destination port j, Vj € J

Ji: set of destination ports connected to origin porti, Vi € Z

(): set of possible scenarios w, Vw € ()
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Parameters:

o | fixed cost of using towboat s € S at time period t € T

o 1yt fixed cost for loading and unloading commodity m € M inbargeb € B
at time period t € T

® Cupsnijriw: UNit cost of transporting commodity m € M along arc (i,]) €
(Z,J) using barge b € B of towboat s € S in trip n € Nj; at time period
t € 7T that were purchased at time period T € 7 under scenario w € (),
where T < t

® Yui: procurement cost of commodity m € M in porti € Z at time period

teT

® Nyirie: unit inventory holding cost for commodity m € M inporti € Z7|JJ
between time period time period T € 7 and t € 7 under scenario w € (),
where T < t

e 7T,j¢: unit penalty cost of not satisfying demand for commodity m € M in
portj € J at time period t € T

® Quitw: supply availability of product m € M in porti € 7 at time period
t € T under scenario w € ()

e h;: commodity storage capacity at porti € ZU J

® w74 deterioration rate of commodity m € M due to storing between time
period T € T and t € 7 under scenario w € (), where T < t

® a,t, ap;: binary availability of towboat s and barge b at porti € 7

e §5, 6;; maximum/minimum number of barges to carry by towboat s € S
e J5: capacity of the most powerful towboats € S

e Wy weight capacity of abarge b € BB

® Wjjt,: the minimum of {w;t,, Wijiw, Wjiw} Where wjy, and wjy, indicate the
maximum weight carrying capacity at porti € 7 J and wjj;, the allowable
weight that can be carried between the channel (i, j) € (Z, J) at time period
t € T under scenario w € (). The last weight (wijtw) depends on the depth
of the waterway and should not exceed the minimal water-level between the
origin-destination ports

e oyt density of commodity m € M

e v;,: volume capacity of barge b € B
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e 0;;: total number of barges available in port i € Z at time period t € T

e t,t,: average loading and unloading time of a barge

e A: average delay in locks

e I;;: number of locks between origin port i € 7 and destination port j € J
e d;;: distance between origin port i € 7 and destination port j € J

e Ty: average speed of towboat s € S at time period t € T

e t;j: allowable transport time limit between each origin port i € Z to destina-
tion portj € J

e Tjj;: maximum number of trips that can be made along arc (i, ]) € (Z,J) at
time period ¢

e d,j;: demand for commodity of type m € M in portj € J at time period
teT

Pw: probability of scenario w € ()

First Stage Decision Variables:

o Y, 1if atowboat s € Sis used in arc (i, ) € (Z,J) in trip n € Nj; at time
period t € T; 0 otherwise

® Yipsnij: 1 if commodity m € M is carried on barge b € B of towboats € §
to serve trip n € N between porti € 7 and port j € J at time period t € T;
0 otherwise

Second Stage Decision Variables:

® Zpitw: amount of commodities of type m € M processed at port i € 7 at
time period t € 7 under scenario w

® Xyubsnijrrw: @amount of commodities of type m € M that were purchased at
time period T and transported t € T using barge b € B of towboats € S
for trip n € Nj; along arc (i,j) € (Z,J) under scenario w € ), where
(t,t)y e Tt <t

e H,irt,: amount of commodities of type m € M stored in porti € ZUU J
between time period 7 and t under scenario w € Q), where (7,t) € T|t <t

e Uyjt,y: amount of commodities of type m € M shortage in destination port
j € J at time period t € 7 under scenario w € )
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® Pyjri : Satisfied demand of commodities of type m € M in destination port
j € J with commodities purchased at time period 7 and transported t € T
under scenario w € ), where (7,t) € T|t <t

Following first and second-stage decision variables are defined for our pro-
posed two-stage stochastic programming model formulation. Decision variables
Y!' = {Yuip|Vs € S,;n € Njji € I,j € Ji,t € T}and Y* 1= {Yypenijt|Vm €
M,b € BseSneNjielje J,t e T} are first-stage variables that re-
spectively determine which towboat to use between any origin-destination pair in
a given time period and which barge to use for carrying any particular product at

any given origin port, respectively, i.e.,
(

1 if atowboat s is used in trip n € Nj; between ports (i,j) € (Z, J)
Yonije = at time period t

0 otherwise;

\
(

1 if barge b connected to towboat s is used in trip n € N; to carry

Yinbsnije = commodity m between port i and j at time period ¢

0 otherwise;
\

The second-stage decision variables include Z := {Z;;,|Vm € M,i € Z,t €
T,w € Q} to denote the amount of commodities of type m € M processed at
porti € Z at time period ¢t € 7 under scenario w ; X := { Xypsuijrtw | VM € M, b €
B,seS,neNy(i,j) e (Z,T)(tt) € Tt <t,w e Q} to denote the amount of
commodities of type m € M that came in origin port i € 7 at time period T € T

and to port j € J at time period t € 7 under scenario w € () using barge b € B
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and towboat s € S attrip n € Njj; H := {Hpirto|Vm € M,i € TUJ, (1,t) €
T|t < t,w € O} to denote the amount of commodities of type m € M stored
in porti € Z|JJ between time period 7 to ¢t and under scenario w € Q) ; P :=
{ijﬂme eM,je J,(t,t) € T|t <t w e Q} amount of demand satisfaction
for commodity m € M in destination port j € J with commodities purchased at
time period T and transported at time period t € 7 under scenario w € (), where
(t,t) € Tt < t;and U := {Uyjt } to denote the amount of commodities of type
m € M shortage in destination port j € J at time period t € T under scenario
w € Q. For notational simplicity, we define Yas Y := Y' J Y2,

Analyzing the prevalent issues of inland waterway transportation network it
is clearly noticeable that the barge transportation through this network is very
frequently impacted by the delays in locks between two connecting ports. To cap-
ture this issue, we model barge delays through a feasible time limit, denoted by
t;j, instead of developing highly complex nonlinear model to explicitly capture
lock congestion. The introduction of #;; provides a feasible time window for tow-
boats to deliver the commodities between each source-destination pair. Violating
this time window will be uneconomical and sometimes infeasible considering the

commodity transportation requirement. Let A, [;;, and d;; represent the average

ijs
delay in locks, the number of locks, and the actual waterway distance between
each origin-destination port (i,j) € (Z,J). Further, we define oy as the aver-

age speed of a towboat s € S and t; and ¢, as the average loading and unload-

ing time for a barge. The total travel time for a towboat s € S between each
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origin-destination port (i,j) € (Z,J) at time f € T can now be approximated
djj o o
as: { Ymem Lves(tr + tu) Yipsnije + (Zj—sft + Ali]-)stijt}, while this travel time is as-

sumed to be restricted by a feasible time limit £;;.

[PIM]  Minimize ) 3 ) ) Z(wstYsm,-tJr Y Enmthmbsnijt> (5.1)

seSneN;ieT jeJiteT meMbeB

+ Z PwQ(Yr CU)

we)
subject to
Z Ymbsnijt < IVbeB,seS,nec M],l €,
meM
jeT,teT (5.2)
Y Yaip < WneNyiclje J,teT(53)
seS
OVanijt < Y Y Yusnijt < OsYenijiVs € S,n € Njj,i € T,
meMbeB
jeJi,teT (5.4)
Z Z Z Z Z Ymbsnijt < 6Viel teT (5.5)
meMbeBseS neN;; jeJ
Yo ) Yaur < mpVieIjeJ,teT (5.6)
SeS neN;;
2 Z stijt < agyVseS,ieZ,teT (5.7)
neN; jed;
Z Z Z Ymbsnijt < qpVbeB,iel,je J,te T(5.8)
meM seS neNj;
d;i _
Z Z (tl + tu)Ymbsnijt + (i + Alij) stijt < tijvn € Mj/s €S,iel,
meMbeB Ust

jeJiteT (5.9)
Ymbsnijt € {O,l}Vm eM,beB,ses,

neNjicTjeJ,teT (510)
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Youip € {0,1}VseS,neNjneNyieZlicl,jeJ,teT (511)

with Q(Y, w) being the solution of the following second-stage problem:

QY,w) = Mininlijizez ) ( Y. thirthiTtw+Z DD

XH, teT meM NieZJJ t=1 beBseSneN;; (ij)e(Z,T)
Z Cmbsnz]Ttmesm]Ttw + Z r)/mztzmztw + Z 7Tm]tum]tw) (5-12)
=1 i€l jeT

Subject to

Zmitw < gomithm S M,l e, te T,CU e Q) (513)

mztw — Z Z Z Z mesnijttw = Hmitthm S M,l el te T,CU e Q) (514:)

beBseS neN;; jeJ;
(1 - ‘xmr(tfl))HmiT(tfl)w = Huirtw — Z Z Z Z mesnijrtwvm eM,
beBseSneN;; jeJ;
ieZ,(t,t)eT|lt<t—1lLweO (5.15)

Z Z Z Z thsnijttw = ijttw + Hmjttwvm eM,
beBseS eNjjieZ;

jedJ, teT,we) (5.16)

Z Z Z Z mesnijrtw — Umjttw - = Hmjrtw - (1 - ‘me(t—l))Hij(t—l)wvm eM,
beBseS eNjjicT;

jeJ (t)eT|t<t—-1lLweO (5.17)

t
Z Z Huittw

meM t=1

IN

WieI|JT teT,wen (5.18)

t
E ijTtw + umjtw = dmjtvm € M/] eJ,teT,weQ) (5.19)

=1

IN

t
Z mesnij’rtw

=1

min{wijtw, wb}Ymbsnijtvm e M,beB,se

SneNjieljeJ,teT,wecQ (520
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t
Z mesnijrtw < pmvmebsnijth eM,beB,seS,ne M],l €el,je J,

=1

teT,weQ (521)

mesnijrtwr Huittw, Hijtwr Zinitews ijrtwr umjtw e R* (5.22)

The objective function (5.1) sums up the first-stage costs and the expected second-
stage costs. The first two terms in (5.1) represent the fixed costs of using towboats
and loading and unloading commodities into the barges. Constraints (5.2) handles
the product mix issues stating only one commodity of type m € M can be loaded
to a given barge b € B in time period t € 7. Constraints (5.3) ensures that that
at any time period t each towboat can use only one of the available trips. Con-
straints (5.4) restrict the minimum (J,) and maximum (J;) number of barges that
can be connected with a given towboat s € S at any time period ¢ € 7. The max-
imum barge usage at any given port i € 7 considering the available barges (6;;)
at that port in time period t € 7T is handled through constraints (5.5). Addition-
ally, through constraints (5.6) the towboat usage between each origin destination
port (i,j) € (Z,J) at time t € T is restricted to a maximum T;j;. Further, we use
(5.7) and (5.8) to captures the effect of periodic availability of barge and towboat
in inland waterway transportation network. Due to aging and other related is-
sues, barges and towboats needs to have periodic maintenance at different time
periods of the year. If such activity occurs for any barge b € B or towboats € S

at any time t € 7 the respective barge and towboat become unavailable in that
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time period. This unavailability issue is captured through binary parameters a,;;
and ap;; in constraints (5.7) and (5.8). Further, the total travel time restriction for a
towboat s € S between each origin destination port (i,j) € (Z,J) attime t € T
is captured through constraints (5.9). Finally, constraints (5.10) and (5.11) set the
integrality constraints.

The second stage problem intends to minimize the inventory storage cost, com-
modity transportation cost, procurement cost, and third party commodity supply
cost (equation (5.12)). Among the second stage constraints, constraints (5.13) re-
strict the processing of commodity m € M according to its availability @, at
port i € 7 in time period t € 7 under scenario w € (). Constraints (5.14) and
(5.15) are flow balance constraints for commodity storage and transportation at
origin port i € Z. Similarly, combination of constraints (5.16) and (5.17) balances
the commodity flow and inventory at destination port j € J. Constraints (5.18)
set the commodity storage restriction for origin and destination portsi € (ZU J).
Constraints (5.19) ensure that, at any time period t € 7, the demand for commod-
ity m € M at destination port j € J must be satisfied either through the water-
way transportation network or from a third-party supplier. Further, we use con-
straints (5.20) to match the amount of commodity transportation based on stochas-
tic waterway condition and the barge wight capacity; constraints (5.21) to match
the amount of commodity transportation following the volumetric capacity of the

barge. Finally, we add constraints (5.22) as standard non-negativity constraints.
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5.4 Solution Approach
By setting |Q)| = |T| = |S| = |B| = 1, model [PIM] can be reduced to a fixed charge

network flow problem which is a proven N 'P-hard problem [12, 65]. This implies
that, model [PIM] is also NP-hard from solution viewpoint, therefore, commer-
cial solvers, such as CPLEX and Gurobi are unable to solve large-scale instances
of this problem. In order to overcome this computational burden, we propose a
hybrid algorithm combining the Sample average approximation (SAA) technique
with an enhanced Benders decomposition algorithm to solve model [PIM] within
a reasonable time frame. The next few subsections discuss the structural details of

this algorithm.

5.4.1 Sample Average Approximation

The uncertain availability of agricultural products (¢,it,) and highly unpre-
dictable water level fluctuations (w;;1,) require the investigation of large number
of scenarios to guarantee a robust network design solution. However, solving
[PIM] for a large number of scenarios is computationally challenging and requires
significant time and computational efforts. Therefore, to address this issue we
apply Sample Average Approximation(SAA) method in solving large instances of
model [PIM]. SAA is a well-known technique and has been widely adopted in dif-
ferent application areas [119, 1]. Interested readers may review the studies by [66]
and [92] to get detailed understanding about the statistical evaluation (e.g., vali-

dation and error analysis, stopping rules) and convergence properties of the SAA.
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Following the SAA algorithm, take a random sample from the set of all available
scenarios and generate SAA problem for that sample scenarios. More specifically,
we select a sample of E scenarios from the scenario set () (E << )), and approxi-
mate the recourse function with the sample average function + ¥,c Q(Y, w). The

problem [PIM] can be approximated by the following SAA problem:

Mi{/té}?ize{g(lf) : Z ( Z Z Z 2 (lPststijt + Z 2 metYmbsnijt)

teT \seSneN;ieljeT; meM beB
1 E
+E Y Q(Y,e) p (5.23)
e=1

For a sufficiently large sample size E, problem (5.23) converges to the optimal
solution of original model [PIM] with a probability of 1.0 [66]. However, with
large E, the computational time in solving problem (5.23) becomes significantly
high. Therefore, in estimating E, an evident trade-off exists between the achieved
solution quality and the computational burden to solve large scale SAA subprob-
lems. Now we summarize the steps involved in applying the SAA technique to

solve model [PIM]:

1. Generate R independent sample of product supply and water level scenar-
ios of size |E| i.e., {9} (w), p2(w), ..., pF(w)} and {w} (w), @2 (w), ..., WE (w)},
Vr = 1,2,..,R, where ¢ = {@pit,,Vm € M,i € Z,t € T,w € Q}, w =
{Wijto, Vi € Z,j € J,t € T,w € Q}. Now solve the corresponding SAA

problem and obtain the approximated lower bound for the algorithm:

Mi{/zérgize{g(l/) =Y ( Yy Y ¥ (lPststijt + )Y ) metYmbsnijt>

teT \seSneNjieljed; meM beB
1 E

s rame) G2
e=1

This SAA problem is solved for each replication r = 1,...,R. Let v} and YE
denote the optimal objective value and the optimal solution of (5.24), respec-
tively.
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2. In the next step we compute the average of the optimal objective values of all

SAA problems, ok. Next, we define (75,5 as the variance of all corresponding

SAA problems. We obtain: !

X 1 X r ~E\2
=R 5 %= R 5O

71 |

Parameter 9% is an unbiased estimator of the optimal objective value of [PIM].
Let us denote the optimal objective value of [PIM] as v*, 7k satisfies the prop-
erty, 271% < v*. Therefore, 271% provides a statistical lower bound of the original
model [PIM] and 0’% is the estimator of the variance of this lower bound.

3. Now from the obtained first-stage solutions from R replications, we pick any
solution Y € Y. We use this solution Y7 to evaluate problem [PIM] with a
newly generated reference sample of size E' (E/ << E) as follows:

E= L & LE L (#ht T L trTaso

seSneN;jiel jeJteT meMbeB
|E,‘ ZQ (Y,e) (5.25)

Here, the estimator ¢p/(Y) provides an upper bound for the main problem
[PIM]. The variance of $g/(Y) is obtained as follows:

E
UE’(Y) ﬁ;{ Z Z Z Z Z (lpststijt+ Z Z metYmbsnijt)

seSneN; i€l jeJiteT meMbeB

1Q(ve) - gEm}

4. Through the estimators calculated in last two steps, the optimality gap gapg g g/ (Y)

and its variance O'gap is calculated as follows:

gape,r e (Y Y) = 8E/(37)
O'é%up =0o%(Y) + %zEz

The confidence interval for the optimality gap, gapg rp/(Y) is obtained as
follows:

ge (V) — 0k + zo{0F (Y )+‘7E}1/2

where z, = ®71(1 — ) , and ®(z) is the cumulative distribution function of
the standard normal distribution.
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5.4.2 Benders Decomposition Algorithm

The stepl of SAA algorithm requires solving a two-stage stochastic mixed-
integer linear programming model with |E| scenarios. Depending on the size of
M|, |Bl,|S],|N],|Z|,|T| and |T| problem (5.23) can still be computationally ex-
pensive. To address this issue, we employ a well-known partitioning method,
Benders Decomposition Algorithm [15], to solve the SAA problem. In Benders de-
composition algorithm, the original problem is decomposed into two parts: an in-
teger master problem and a linear subproblems. Before introducing the subproblems,
let us first present the underlying Benders reformulation for model [PIM(SAA)]

as follows:

Ml{/llei’lY”llZE{ Z Z Z Z Z <1Pststijt + Z Z metYmbsnijt)

teT seS neN;iel jeJ; meM beB

1 & o1 o2
= SP.(X,H,U,Z|Y ,Y 5.26
5 1SR ) 6

Subject to (5.2)-(5.11) and (5.13)-(5.22). We present SP,(X,H, U, Z|Y1, YZ) as the
scenario-specific subproblem. For given values of v = Yonbsnije| Vm € M, b €
BseSneNjicljeTteTand¥ = {YyuulVs € S,ne Ny iel,je
Ji,t € T} problem [PIM(SAA)] can be reduced to the following primal subproblem

that includes only continuous variables X, H, U, Z as follows:

t
SPe(X, H,U, Z|Y1,Y2Minimize{ Z Z ( Z Z hmiTthiTte + Z ’)’mitzmite

teT meM NieZ U J =1 i€z

t
+ Z ﬂmjtumjte + Z Z Z Z Z CmbsnijTtmesnijTte)} (5-27)

jeg beBseSneN; (ij)e(Z,J) =1
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Subject to

Zmite

Zinite — Z Z Z E mesnijtte

beBseS neN; jeJ;

(1 ~ Kmr(t-1) )Hmir(t—l)e

Z Z Z Z mesnijtte

beBseS eNjjieT;

Z 2 Z Z mesnijrte

beBseS eNjjiel;

t
Z ijrte
=1

t
Z Z Hyitte
meM =1
t

Z mesnijTte

=1

t
Z mesni]"rte

=1

mesnijrter Hiittes Hmj'rte/ Ziniter ijrte/ umjte € R*

IN

IN

IN

PmittVm e M,ie I, teT (5.28)
HmitteVm S M,l el te T (529)
Z Z Z Z mesnijrte + Huirte

beBseS neN;; jeJ;

Vme M,ieZ(t,t)e Tt <t—1 (5.30)
Pujtte + HyjieVm e M,je J,t €T (5.31)

ijrte + Hmj'rte - (1 - ‘xmr(t—l))Hij(t—l)e

VmeM,je J,(t,t)e Tt <t—1 (532)
Apjt — Umjte¥m € M,j€ T, t €T (5.33)
hWwWieZ|JT teT (5.34)
min{Wijte, Wp } YVyupsnije Vm € M, b € B,
seSneNieljeJ,teT (5.35)
pmvmebsm-]-Nm eM,beB,ses,
neNjieljeJ,teT (5.36)
(5.37)

Let & = {Opite > 0|Vm € M,i € Z,t € T,e € E}, k = {Kkyite|¥Vm € M,i €

Z,t € T,e € E}, I = {Cnirtelym € M,i € Z,(t,t) € T|lt < t—1,e € E},

e = {emjte|lVm € M,j € J,t € T,e € E}, B = {Bmjre|Vm € M,j € J,(7,t) €

Tlt <t—1e € E}, x = {XmjtelVm € M,j € J,t € T,e € E}, v = {vje >
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Ovi e Z,t € T,e € E}, T = {[j;, > 0|Vj € J,t € T,e € E}, ¢ = {Gbsnijte =
Ovme M,be B,seS,neNyj,ielje J,t€T,ecE}and A= {Appsnijte >
0Vm e M,b € B,s € S,n € Mj,i €Z,je J,t € T,ec E} be the vector of the
dual variables associated with constraints (5.28)-(5.36). We present the dual of the

primal subproblem for each scenario e € E, referred to as [DSP],, as follows:

[DSP], := Maximize y | ) ( Y duwjeXmjte = Y PmiteOmire = 3, Y, Y.

teT meM \jeJ i€ beBseS neN;
Z 2 (min (wijte/ E) Ymbsnijtgmbsnijte + pmvbymbsnijt/\mbsnijte)) - Z ( Z Eivite
jeJgiel teT \iel
+ ET,-te> (5.38)
jeJ
Subject to
—Kmite — Vite S hmitt Vm € M/i € I/t € T(539)
—Kimite + (1 - D‘mr(t+1))€mi‘c(t+1)e —Vite < hpie Yme M,i€Z,
(,hyeT|lt=t-1 (5.40)
(1 - “mr(t—kl))gmir(t—kl)e — Cmitte — Vite < My Ym e M,i €T,
(,hyeT|lt<t—1 (5.41)
—&mjte — Ljte < hjy Ym e M,j € J,t € T(5.42)
—Emjte T+ (1 - D‘mr(t+1)),3mjr(t+1)e - the < hijt vme M,je J,
(,H)eT|lr=t-1 (5.43)
(1 - “mr(t+1))ﬁmjr(t+1)e - ,ijrte - 1—‘jte < hijt Vme M,je J,

(,hyeT|lt<t—1 (5.44)
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—Cmitte + Bmjtte = Gmbsnijte — Nmbsnijte < Cmbsnijee VM € M, b € B,s € S,n € Njj,
ieZjeJ,(t,t)eT|lt<t—1 (545)

—Kpite + Emjte — Smbsnijte < Cmbsnijit VM € M, b € B,s € §,n € Njj,
ieZ,je J,teT (5.46)
—Opite + Kpite < Ymit Vme M, i€, teT (5.47)
Xmjte < Tmjt Vme M,je J,teT (5.48)

—Bumjrte + Xmjte < OVmeM,je J,

(t,)ye Tt <t-—1 (5.49)
—Emjte + Xmjte < OVmeM,je J,teT (5.50)
Bumites Vites Ujtes Gmbsnijte € RT (5.51)
Kmites Cmittes Emijter Bmjrter Xmjte € R (5.52)

Now, we introduce an additional free variable ® to the underlying Benders refor-

mulation and define the following Benders Master problem [MP]:

[MP]MiqL{igzize Z Z Z Z Z <1Pststijt + Z Z ﬂmthmbsnijt> +©® (5.53)

’ teT seSneN;jiel jeJ; meMbeB

Subject to:
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ZEZT ( 2 dethmjte_ 2 Z‘Pmlte mite — Z Ehvlte

meMjeJ meMiel meMiel
Z Z ]te - Z Z Z Z Z Z (min (wijte/ E)Ymbsnijtgmbsnijte +
meMjeJ meMbeBseS neN;;jeJ i€
vamebsnithmbsnijte)) (0,x,¢,¢B,xv,T,6,\) € Pp (5.54)
Z Ymbsm’jt < 1VbeB,seS,ne M],l €,
meM
jeJ,teT (5.55)
OVanijt < Y Y Yusnijt < OsYenijiVs € S,n € Njj,i € T,
meMbeB
jeTJ,teT (5.56)
Z Z 2 Z Z Ymbsnijt < OVieIteT (5.57)
meMbeBseS neN;; jeJ
Z Z stijt < auVseS,ieZ,teT (558)
neN;; jeJ;
Yo Y Y Yapsnip < awVbeBiel,je Tt 659)
meM seS neNj;
d: ~ .
Y Y (t A+ tu) Yousnije + <i + Alij) Yonip < LjVn e Nyj,s € S,i €T,
meM beB Ust
jegJ,teT (5.60)
Z Z Ysm'jt < Tl]tVl S I,] e J,teT (5.61)
SeS neN;;
Z stijt S 1vn € M]/l € I/] S \7ilt 65162)
SeS

Yipsnijp € {0,1}Vme M,beB,se S,neNy,icel,jec J,teT (563)

Youip € {0,1}Vse S,ne N icZ,jeJ,teT (5.64)
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Constraints (5.54) are referred to as optimality cut constraints where Pp is the
set of extreme points in the feasible region of [DSP] and p, is the probability of any
specific scenarioe € E (p, = %). The objective function value of [DSP] bounds free

variable © from above i.e.,

O > 2 Z Pe( Z Z dmthm]'te - Z ZGbmiteﬂmite - Z Zﬁivite

ecEteT meMjed meMiel meMicl
- Z Z Ejrjte - Z Z Z Z Z Z (min(wijte/E)?mbsnijtgmbsnijte
meM jeg meMbeBseS neN;; jeJ i€l

+pmvb?mbsnithmbsnijte) ) (1-9/ K, gl & ,B/ XV, F/ G, A) S PD (565)

In problem (5.27), constraints (5.33) ensure that for any feasible solution of [MP], Y,
the primal subproblems SP,(X, H, U, Z|Y1, Yz) will always remain feasible. There-
fore, we do not add any feasibility cut to [MP]. Moreover, the parameters lyict, it
Cmbsnijcts Ymit and 7Ty are finite, which implies that any feasible solution of primal
subproblems must be bounded and based on the strong duality theory, the dual
subproblems [DSP] will also remain feasible and bounded. Master problem [MP]
contains large number of optimality constraints (5.54) that makes it difficult to
solve. To overcome this issue, we solve a restricted master problem [RMP] in which
the set Pp is replaced with Py, i.e.,, P, C Pp, and the size of Py, increases with
each iteration r. The overall algorithm is outlined below:

Let UB" and LB" be an upper and lower bound of the original problem [PIM]

obtained in the ' iteration of Benders decomposition algorithm. Let, Zhias =

LseS LneNyj LieT LjeJ; LteT (l,bststijt + Lmem Lves metYmbsnijt> and let P, be
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the set of extreme points at iteration r. Basic Benders decomposition algorithm it-
eratively solves [RMP] to obtain the values of {Y! . jt} seSneEN;iET e T teT Y] i jt}
meMbeBSeSneNieT jeTteTr and z;,¢. The objective function value of [RMP],
ziyp, Provides a valid lower bound for the original problem [PIM]. Next, the the
dual subproblem [DSP] is solved with the fixed values of {?Srmjt} and {Y’ . ]-t}.
At each iteration r, the solution of the first-stage decision values z,,c and objec-
tive function value of subproblem (zg;;5) provides a valid upper bound for the
original problem [PIM]. The algorithm terminates if the obtained gap between the
upper and lower bounds falls below a pre-specified threshold limit €; otherwise

Pp, is updated and the optimality cut (5.54) is added to [RMP], if violated. The

pseudo-code of algorithm is provided in Algorithm 1.

5.4.3 Enhancement of Benders Decomposition Algorithm

This section introduces a number of techniques that can enhance the compu-
tational performance of the basic Benders decomposition algorithm. These tech-
niques include addition of problem-specific valid inequalities, different variants
of multi-cut and mean-value cut, pareto-optimal cut, knapsack inequalities, and a
few simple heuristic improvements (e.g., warm start). These techniques helps to

generate a high quality feasible solution of problem [PIM] in a timely fashion.

5.4.3.1 Valid inequalities

In each iteration of Benders decomposition algorithm, we add valid inequal-

ities to the relaxed master problem [RMP]. These valid inequalities are derived
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by utilizing the special structure of problem [PIM] and can be used to accelerate
the performance of the overall Benders decomposition algorithm. Following set

of valid inequalities are proposed:

Problem specific valid inequalities:

e Surrogate constraints (5.66) are proposed which provide a lower bound on the
required number of barges to satisfy commodity demand m € M at time
period t € 7. The value of ¢ can be varied between 0.0 and 1.0 and when
o = 1.0, it ensures that all demand must be satisfied through the inland
waterway transportation network.

Yo YY) Y@ > ) odue Vme M,t €T  (5.66)

beBseSneN;jiel jeJ; jeJ

e While choosing between multiple barges of similar capacities, symmetries
may arise that will result in elongated search times for the solver. Therefore,
we add lexicographic ordering constraints (5.67) and (5.68) to set priorities on
barge selection. Such priorities help to break the duplications caused by the
barge selection symmetry and accelerate the performance of the branch-and-
bound process.

Yl,b—l,snijt > YlbsijtVb eB \ 1l,se S, ne M],l S I,] e J,t € T15.67)
m m
Y 2Py e > Y 20 PY i Ym e M, be B\1s € S,n e N,
p=1 p=1
iel,jeJ,teT (5.68)

e Symmetries may also arise while selecting towboats. Let S be the subset of
same typed towboats, i.e.,, S, C S and s, C S] where s, represents a set of
non-decreasing order of the members belongs to S,. Similar to constraints
(5.67) and (5.68), lexicographic ordering constraints (5.69) and (5.70) are ap-
plied for each S; to determine the priority in utilizing towboats of the same

type.

nmﬁw%aﬂ\ULneA%ieljejJe7'(5@)
Vo Yo iitVse € S\ {1}, n € Njji€Z,je J,t € T(5.70)

Ysé —1,nijt >
>

W1+ Ys,—1,nijt

e Constraints (5.71) and (5.72) generate a lower bound on the required barge
usage for satisfy the demand between time interval [t1, f5]. If the cumulative
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demand over period [ti, f2] is greater than or equal to the maximum possi-
ble inventory held (h]) and initial inventory Hj:,, then at least a certain
number of barges should be used in that specific interval:

EE T LT £ vy | B E e Rerh]
mosnijt —

beBseS ne/\f,j i€l jeJ t=t wb
Vm e M, (tl, tz) e T, thy > t (5.71)
t t
fa Zjej thztl dmjt - Zjej 271:1 Hmjrtl
IPIP IR I AT .
beEBseS neN;jicl jeJ t=t b
Vm e M, (tl, i’z) eT, th>H (5.72)

Lower bounding function: Lower bounding function [112] is another class of valid
inequalities providing useful information about the projected terms of the objec-
tive function of the master problem [RMP]. These valid inequalities can be consid-
ered as an approximated boundary of the recourse cost of scenarios in the master
problem. To obtain lower bounding valid inequalities, we consider a deterministic
version of model [PIM] and obtain its linear relaxation [LBF] for each scenario as

follows:

t
[LBF(E)] U((Pmiterwijte) . ]Vg(ﬂlfllgllzzez Z ( Z thirthiTte+2'7mitzmite

teT meM \ieZT U J t=1 ieT
t b
T Z nmjtumjte + Z Z Z Z Z Z Cmbsnijtt + = lp 77m t)mesnijTte> (5.73)
j€eJ beBseS neN; il jeJ; T= 050 wy
Subject to
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Zuite < QmiteVm € M,ieZ,teT (5.74)
Zmite = Y Y Y, Y Xupsuijite + Humitte
beBseS neN;; jeJ;
Vme M,ieZ,teT (5.75)
(1- amr(t—l))HmiT(t—l)e = Z Z Z Z mesnijrte + Hpizte Yme M,i €1
beBseS neN; jeJ;
(,t)eT|lt<t—-1 (5.76)
Z Z Z Z mesnijtte = ijtte + Hmjttevm S M/] eJ, te T (5-77)

beBseS eNjjieZ;

2 Z Z Z mesnijrte = pmjrte + Hijte - (1 - [er(tfl))Hij(tfl)e
beBseS eNjjieZ;

Vme M,je T, (t,t)eT|lt<t—1 (5.78)
t
Z ijrte = dmjt - umjtevm eM,jed,teT (5.79)
=1
t
Y. Y Huirte < WVieZ|JT teT (5.80)

meM t=1
t

Z mesnij‘rte S min{wijtw '(I)b} Vm € M/b € B/S € Srn € M]/Z € I/] € t7i/ (%ﬂ

=1

t
Y Xppsnijrte < pmvp Vme M,beBseSneNjieljeJteT (582
=1

mesnijfter Hiittes Hmjrte/ Zinites ijrter umjte € RT (5.83)
Theorem 1
LetmesijTte/ HmiTte; Hmjrte; zmite/ ﬁmjrte; Umjte; ?snijt/ and ?mbsnijt be the optimal so-
lution of problem [LBF(e)]; 9,,; and Cmbsnije be the dual variables associated with

constraints (5.74) and (5.81). Then, equation (5.84) presented below is a valid cut

for the Benders master problem [RMP]:
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t J— [— J—
O, > Z Z ( Z Z hiict Humitte + Z')’mitzmite + Z nmjtumjtw + Z Z Z

teT meM \ieZU J =1 iel jeJ beBseS neN;;

t
Z 2 Cmbsnijrtymbsijrte) + Z Z Z Z Z (lpst(?snijt - Ysm’jt) + 2

(i,j)e(Z,T) =1 seSneN; i€ jeJiteT meM

Z met(Ymbsnijt - Ymbsnijt)) - Z Z Z &1 (¢Z11it ¢m1f€ mit 2 Z Z

beB meMieTteT meMbeBseS
Z Z Z Z 0‘2 z]t wijte)gmbsnijt Ve € 05-84)
neNU i€ jeJ; teT
Proof:
[LBF(e)] is a linear relaxation of deterministic model [PMI] for scenario (e), thus
it provides a lower bound on its optimal cost. Therefore, at any optimal solution,
following the ‘wait and see” and “here and now” solution properties of stochastic

programming problem [16], following relation holds among the Benders equiva-

lent reformulation of model [PMI] and the objective function of model [LBF(e)]:

PSP ID M (MAVESD o ML TCIED o 3 (D >

seSneN;jiel jeJ;teT meMbeB teT meM \ieZT U J =1

t
hmirtﬁmiﬂe + Z '}’mithite + Z ﬂmthmjte + Z Z Z Z Z

i€l jeJ beBseSneN;; (ij)e(Z,J) t=1

Pst 77mbt
(Cmbsmjrt t=—+t = mbszjfte
5 sWp

Now we have the following variable transformations:

X
Ymhsmth Lo wT:bsmmev me M,beB,seS, ne]\/’l]zeI]EJZ,tET

bV ZT 1 ZmEM ZbeB meSHZ]TtE
Ysm]t ~
(stb

VseSneNjeZLjecJ,teT
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These translates to the following equations:

LELLE (bt & Lt +02 L T (3

seSneN;jiel jeJiteT meM beB teT meM NieZUJ

t
2 hmirtﬁmirte + 2 'Ymitzmite + Z ﬂmjtumjte + Z 2 Z Z (

=1 i€l jeJ beBseSneN;; (ij)e(Z,T)

t —_— —
wstymbsnijt + Z CmbsnijTtmesij’cte)) + Z Z Z Z Umbtysm'jt
=1

seSneNjj (i,j)e(Z,T) teT

t — J— J—
=0, > Z Z ( Z Z hmiTthiTte + Z’)’mitzmite + Z nmjtumjte + Z Z

teT meM \ieZ U J t=1 i€l jed beBseS

Y Y X Cmbsnijftymbsijrte) +Y. Y Y Y ) (lPst(stijt — Yonijt)

neNy; (i,j)e(Z,J) T=1 seSneN;ieT jeJiteT

+ Z Z Mmbt (?mbsni]’t - Ymbsnijt)) (5.85)
meM beB

Solving a [LBF] for each scenario may not computationally be interesting. For
this reason, we propose to solve only a single problem with maximum supply and
water level, i.e., ¢! = maxocp{ Pmite fme M icT teT w;yfx = MAXecE\Wijte }ieT je T te T
The solution of this auxiliary problem provides a valid lower bound for all sce-
nario subproblems. However, The obtained bound can be further improved for
each scenario.

Let Gyit, Gmpsnije be the dual variables associated with the stochastic constraints;
A and A; indicate the set of alternative optimal dual solutions for ¢ and ¢, respec-
tively; and 0 < a1, ap < 0.5. Functions v(¢yit,) and v(wjjy, ) are piece-wise linear

in ¢ and w. Based on sensitivity analysis, we have:

o(¢" —P) > v(PM™) — aymaxgea®’ P > v(P") — a1 07

(@) — oczmaxggAngz?) > (@) — apc

264

v(wmax _ ZI—‘))

v

www.manaraa.com



Let 43 = ¢ — ¢, and ¥ = D" — @,,, therefore, we have:

t
O, > Z ( Z Z hict Humitte + Z’)’mitzmite + Z 7ijt‘umjte + Z Z

i€eZUJ t=1 icl jeJ beBseS

t o _
Z CmbsnijTtmesijTte) + Z Z Z Z Z (wst(ysnijt - stijt)
J)t=1

neN; (ij)e(Z, seSneN;; i€l jeJiteT

+ Z 2 Umbt(?mbsnijt - Ymbsnijt)) - Z Z Z &1 (4)%? - ¢mite)l_9mit

meMbeB meMieZteT
o 2 2 Z Z Z Z Z “Z(szr';ltax - ZDijte)gmbsnijt Ve e E (5.86)

meMbeBseS neN;; i€l jeJ teT

This confirms the validity of the proposed inequality (5.84).

Cutset inequalities:

In model [PIM], the set of nodes and arcs are denoted by sets D and A, respec-
tively, where A includes all paths that connects the origin and destination ports.
Based on the feasibility requirements of the problem at hand, sufficient capacity
should be installed across any partition of the network including the set of tow-
boats and barges to support the commodity flow. Let, D C D be a nonempty
subset of the the node set D and D be its complement, i.e., D = D \ D. The corre-
sponding cutset is defined as (D,D) = {a;; € Ali € D,j € D}. Let M{(D,D) =
{m € M|¥cpXwea Pmitw = 0, Yiep Amjt = 0} be the associated commodity
subset for each time period t. The maximum flow over this cutset is defined as

dnes = {X e, (D,p) Liep dmjt}- Cutset (D, D) is a valid cutset if A5y > 0

Now using parameters Tjj;, s, and Wy, the capacity of each arc in a specific cutset
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(D, D) for time period ¢ can be approximated as uq,; = {Tjj X 0s X Wyli € D,j €

D).

—

Definition 1
C: C (D,D) is a cover if the total capacity of the arcs in (D,D) \ C; does not

support (cover) the flow of demand at time periodt, i.e., Zaije(ﬁ,g)\c Ut < d”Z‘ng)

Definition 2
A cover set C; is minimal if opening any arc in C; is sufficient to cover the demand,

dmax

ie., Zaz] €(D,D)\C Yt + uf,ﬂ]z] = %D,py qu] € Cr.

Let y,; stands for the capacity of arc 4;; in any cover set C; C (D, D). The cover
inequality can be defined as Zai]-ect Ya; = 1 which forces to open atleast one arc
from coverset C; to meet the flow requirements. Considering the structure of prob-
lem [PIM], to separate this set of inequalities, we adopt the procedure proposed
by Chouman et al. [23]. For each arc in (D, D) we define three new parameters
Yi = {e 5)i € D,j € D}, Yff, and Y4, = {YRE I € D,j € D}.
The first parameter represents the maximum number of barges that can be used

in a given arc a;; of cutset (D, D) at time period ¢. Parameter YRE

reports the total
number of barges selected in the current solution for the same arc a;;. The third
parameter represents the ratio of two previous parameters. Let C;; and Cp; be

two subsets of arcs in cutset (D, D) at time period t for which Yt,a,-j >1—¢,,and

Yt,u,-]- < €, respectively. Parameter €.; is a small positive number. For each time
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period t, subsets C; ; and Cy; in cutset (D, D) are determined in such a way that

they satisfy following condition:

Y. Upa 2 )55 = Y, Ua>0 VEET

a€(D,D)\(Cy,sUCo ) a€Cyy

We used OpenCloseArcs algorithm (Algorithm 2) to determine C; ; and Cp for
the current solution of the model, i.e., Ymbsniﬁ.

Algorithm 2 uses U; and D; to represent the residual capacity and residual
demand for each time period. Given the current solution ?mbsni]'t/ this algorithm
attempts to close an arc with a small ?tﬂ;‘j (as measured by €.;) so that the resid-
ual capacity after closing that arc will still cover the residual demand Dy, i.e.,
u; — Uta > Dy. Similarly, the algorithm tries to open an arc with large ?t,ﬂij (as
measured by 1 — €.;) and such that there is still some residual demand to cover.

To obtain a violated cover inequality (CI) for cutset (D, D) in each time period ¢, if

there is any, following separation problem needs to be solved:

Zsep(t) = min Z ?t,u,-jzu{j (5.87)
a;;€(D,D)\(Cy,:UCoyt)
S.t : Z ut,aijZai]- Z Z I/lt,ai]. - dz’l(a%’g)
a;;€(D,D)\(C1,UCo) a;j€(D,D)\Co,

Zaz‘j ~ {0, 1} Val-]- € (51 Q) \ (Cl,t ) CO,t)

For each time period ¢, solving model (5.87) provides a cover set C; for the
restricted cutset (D, D) \ (Cy; U Cp;). Note that, binary variable Z,,; takes the
value one if the arc a;; is selected to be in the cover C;. Since problem (5.87) is
frequently solved, the solution time for each time period and each cutset can be

quite time consuming. Therefore, we use a heuristic approach [23] the basic idea
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of which is to exclude the arcs with large ?t,aij as much as possible from the set
(D,D) \ (C1+ U Cyy). This increases the chance of finding a violated inequality.
Following this approach, arcs are considered in a non-decreasing order of the ?tlﬂij'
Once a violated Cl is obtained, we can easily derive a minimal cover set by remov-
ing as many arcs as possible with large Yt,a,-j to meet the required condition,i.e.,
YajeC Yt,aij < 1. Once the cover set for cutset (D,D) for each time period t is
obtained, we should open at least one arc from that cover. However, this does not
necessarily mean that the capacity of the given arc should be used at full. There-
fore, we define multiplier R f,ﬁij as a reducing factor of maximum barge capacity
assigned to an arc. Obtaining the approximated number of barges we can form

the corresponding CI as follows:

1/ Xmem(D,D) mijt 1
Rf;ij = E( mGZ\i/InEan,Q) i 7 ) VteT,a; € C
t(D,D) dij YD i
Yggij = Rf;inZZ? Vte T, ajj € C;

Z Z 2 2 Z Ymbsna,-jt > aﬁ?ézlt{yzgﬁ} Vte T (5.88)
ij

meMbeBseS neNja;;eC
Another family cutset inequalities is known as minimum cardinality inequalities.
The basic idea of these inequalities is to find the minimum number of arcs in a
cutset, the capacity of which are needed to cover the maximum demand of that
cut set, i.e., d’;g%xl D)’ Let Cy ; represent the set of open arcs in cutset (D, D) at time

period t and Cp; be the set of closed arcs as obtained for the cover inequalities.
268

www.manaraa.com



The arcs in (D, D) \ (Cy; U Co,) are ordered in a decreasing manner, i.e., Utay >
Ut (a+1); Vaj; € (D,D) \ (Cy1,+UCo,). Finally, the least number of arcs the capacities

of which are required to ensure flow in the given cutset is obtained as follows:

L(B,0)\ (C1p0Con) = max{h: y ity < dTSxDNcuuco,t)} +1 VteT (589

Finding the value of lt,(ﬁQ)\(Cl,tUCo,t) for each cutset at each time period, we get
the information that in how many arcs at minimum we would have flow of barges.
However, this does not signify that all capacity of the arcs need to translate the
result to the problem at hand, to do so we make use of the introduced reducing

factor for the cover inequalities as follows:

Yy y ¥ Y., Yubsnagt > liop DY\ (C1UCos) mzn{Y‘fl’;ij}VtET(S.%)

meM beB seS neN;; ajj€(D,D)\(Cy,UCo,z)

5.4.3.2 Multi-cuts
Benders decomposition algorithm can be enhanced further by adding two types
of multi-cuts, Type-1 Benders cut and Type-2 Benders cut. The application of these

cuts are discussed below:

Type-1 Benders cut: The first cut in this class is the standard multi-cut approach.
In this approach, instead of adding one optimality cut at a time as in the case of

standard benders decomposition algorithm, we add scenario specific cuts one for
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each scenario based subproblem [17]. Following this procedure, the optimality cut

constraint (5.54) can now be modified as follows:

O, > Z Z < Z dmthmjte - Z‘Pmiteﬂmite - Z Z Z Z Z (min(wijtezwb)

teT meM \jeJ i€l beBseSneN;;jeJ i€T
?mbsnijtgmbsnijte + pmvb?mbsnijt/\mbsnijte)) - Z < Z Eivite + Z Ejrjtg)
teT Niel jeJ
Ve € E,(9,x,0,¢ B, x,v,T, ¢, A) € Pp (5.91)

The only difference between Type-1 Benders cut and the original optimality
cut (5.54) is that the variable © in (5.54) is now replaced with ®,. The objective

function of the Benders master problem [MP] is modified as follows:

Mi?\l{iglize{ 2 Z Z Z Z (lpststijt + Z Z 77mbi‘Ymbsnijt) + Z Pe@e}(5-92)

teT seS neNjiel jeJ; meM beB ecE

With the addition of Type-1 Benders cut, the Benders decomposition algorithm is
expected to take fewer iterations to reach the desired optimality gap. In contrary,
the presence of large number of optimality cuts in the Benders master problem re-
quires longer time to solve. To alleviate this challenge, scenario bundling technique

can be applied which is introduced in Type-2 Benders cut.

Type-2 Benders cut: The performance of the Benders decomposition algorithm
can further be improved by applying scenario bundling technique to it [46]. In
this technique rather than defining subproblems for each scenario e, we define
each subproblem for a scenario bundle consisting of a number of scenarios. For
instance, bundling can be done by considering different supply and waterlevel

scenarios, i.e., high, medium, and low. Let |E| individual scenarios are grouped
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into |L| bundles where each bundle is specified by [, i.e., I € L and p; = Y .c; Pe-
Model [DSP,] is now solved for each scenario bundle | € L and optimality cut is

defined for each bundle [ as follows:

02 Lpe( L L (L wtwe~ Tt~ DT L L ¥ (mintae

e€l teT meM \jeJ i€l beBseSneN;;jeJ i€l
wb)?mbsnijtgmbsnijte + vamebsnithmbsnijte)) - Z ( Z hivite + Z Ejrjte>)
teT \iel jeJ
VieL, (8,x,0,¢B,xv.T,6,\) € Pp (5.93)

The benders master problem [MP] objective is modified as follows:

Minémize{ Z Z 2 2 Z <1Pststijt + Z Z qmthmbsniﬁ) + 2Pl®l}(5-94)

teT seSneNjiel jeJ; meMbeB leL

5.4.3.3 Pareto-optimal cuts

Addition of Pareto-optimal cuts can significantly improve the convergence of
the Benders decomposition algorithm. These cuts are generated at each iteration
in such a way that the cuts will be stronger and dominate over the previously gen-
erated cuts [74]. Constructing these cuts are overly relied on the solution obtained
from the dual subproblem. If the primal subproblem shows degeneracy, multiple
optimal solutions are obtaned from its dual, each of which can generate an opti-
mality cut of particular strength [124]. Thus, selecting the strongest cut among all
possible cuts is of high importance. Magnanti and Wong [74] explained the idea of
dominance to select the strongest cut. Let Y- be the polyhedron defined by (5.55)-

(5.57), (5.59)-(5.60), and 0 < {Y,upsnijt } me M beB,seSneN; icT,je e < 1 and Pp be

jr
the polyhedron of [DSP].
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Definition 3

is stronger than that corresponding to (9,%, [ E, X.v,I,c,A) € Pp if following

relation holds with strict inequality for at least one point Ymbsnijt e Yl

Lr( L % (X At~ Swichie = D8 T L T (mintee )

ecE teT meM \jeJ i€T beBseSneN;;jeJ i€l
Ymbsnijtémbsnijte + pmvbymbsnithmbsnijte>> - Z < Z Eiﬁite + Z E]f]te>) > Z Pe (
teT \iel jeJ ecE
Z Z < Z dmjtxm]'te - Z4’mitel_9mite - Z Z Z Z Z (min(wijte’/wb)?mbsnijt
teT meM \jeJ i€l beBseSneN;;jeJ i€
Embsnijte + pmvmebsnijthbsnijte)) - Z ( Z hiVite + Z hj - fjte))
teT \Niel jeJ

Ymbsnijt S YLP (5.95)

Definition 4

An optimality cut generated with dual solution (19, R, é, g B, X7, T, C,A) € Pp is
referred as Pareto-optimal, if it is not dominated by any other cut. Similarly, the

dual solution (3‘, %8 B, %,0,1,¢,A) is called Pareto-optimal.

Let 7i(Y'P) denote the relative interior of Y-, Pareto-optimal dual solution can

be extracted by solving an auxiliary problem [DSP(PO)]. Let YV, . it € 1 (Y ) mem,

bEBSES nEN; iCT jE T teT be the core point, ?mbsnijt and [DSP], respectively indicate

272

www.manaraa.com



the optimal solution of the master problem and objective function value of dual

subproblem. Problem [DSP(PO)] is formulated as follows:

[DSP(PO)]e := Maximize Z Z ( Z dmthmjte - Z ¢mitel9mite - Z Z Z

teT meM \jeJ ieZ beBseS neN;

A — 0 0
Y. ) <mln(wi]'ter Wp) YyupsnijtSmbsnijte + vabymbsniz’tAmbS”iﬁe) )

jeJ i€l
-y ( Y hiviee + ) Ejrjte> (5.96)
teT \iel jeJ

subject to (5.39)-(5.52) and

Z Z ( Z dmthmjte - Z (Pmiteﬁmite - Z Z Z Z Z (mi”(wijte/wb)
teT meM \jeJ i€l beBseSneN;;jeJ i€l
?mbsnijtgmbsnijte + vab?mbsnithmbsnijte)> - Z ( Z Eivite + Z Ejrjte)
teT Niel jeJg
— [DSP], (5.97)

After solving [DSP], we obtain [DSP], which is then used in the auxiliary prob-
lem [DSP(PO)|, and the corresponding Pareto-optimal cut is derived. However,
in this approach, the dependency on the auxiliary problem can have detrimental
effect on the performance of overall algorithm. It doubles number of subprob-
lems needed to be solved in each iteration of benders decomposition algorithm.
Additionally, the presence of equality constraint (5.97) in [DSP(PO)|, makes the
auxiliary problems difficult than solving the regular subproblems.

Equality constraint (5.97) restricts the dual subproblem [DSP], to the optimal
face of dual polyhedron where all the optimal solutions exist. The objective func-
tion (5.96) attempts to pick a solution among all available alternatives on the op-

timal face which gives the tightest cut as measured from an interior point of the
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master problem. Here we utilize a novel method to decrease the complexity of
auxiliary subproblem. This method is structured based on several definitions from
linear programming theory.

Definition 5

An alternate optimal solution exists if at least one nonbasic variable possesses a

reduced cost of zero.

When we identify that at least one alternate dual optima exists, the best one is
searched to generate the cut by restricting the dual subproblem to the optimal
face. Corollary 1 of linear programming theory states the way of fixing the dual

subproblem to the optimal face.

Corollary 1
Variables with nonzero reduced cost maintain their current value at any alternate

optimal solution.

Proof: Suppose any variable with non zero reduced cost changes its value, this
mandates that the optimal objective value should also be changed. However, this
statement contradicts the definition of alternate optima, therefore, the value of
variables with non zero reduced cost should remain same at any alternative opti-
mal solution. ]

If the dual value of an active constraint in an optimal solution is nonzero, from
duality theory, the slack variable corresponding to the given constraint is equal
to zero. Therefore, each inequality constraint with nonzero dual value should be

converted into an equality, which is equivalent to fixing the slack variables with
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nonzero reduced cost to zero. Using these definitions, Lemma 1 introduces an

equivalent subproblem to extract Pareto-optimal cuts.

Lemmal
Let (8,%,7,% B, % V,T,C A) indicate the vector of variables with nonzero reduced
cost derived from solving the [DSP], problem snd Sl be the slack variable of each

constraint. Then, the solution of

[DSP(RPO)]e := Maximize Z Z ( Z dmjt?(mjte - Z PmiteOmite — Z Z Z

teT meM \jeJ i€l beBseS neN;
2 Z (mln(wqte; wb)Ymbsm]tGmbsm]te + Oom0pY, bsmthmbsnijte>> - Z ( Z Eivitf—’
jeJ i€l teT \Niel
+ E]Tjte) (5.98)
jeJ
subject to (5.39)-(5.52) and
(0,%0¢B%7T,¢AS)=0 (5.99)

is equivalent to that obtained from the Magnanti-wong problem.

Proof: If there are multiple optimal solutions for a problem, the variables with zero
reduced cost can only change their value not effecting the objective function value.
Hence, if we have multiple optimal solutions for [DSP],, we want to restrict [DSP],
to its optimal face and the variables with nonzero reduced cost can be excluded
from the corresponding dual polyhedron by fixing their values to zero. n
Equality (5.99) fixes a set of variables with nonzero reduced cost to their current
value (zero). This can be efficiently managed by the state-of-the-art optimization

solvers such as CPLEX and GUROBI.
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5.4.3.4 Mean-value cuts

Mean-value cut was first introduced by Batun et al. [14]. This inequality gen-
erates good lower bounds in the earlier iterations of the Benders decomposition
algorithm which eventually helps to accelerate the convergence of the algorithm.
The authors add a number of inequalities to the Benders master problem by uti-
lizing the primal subproblem defined under the mean-value scenario e. In this
section, we first introduce the primal-based mean-value cut (Type A cut) proposed by
Batun et al [14]. We then extend this cut to generate multiple mean-value cut (Type B
cut) based on the Type-2 Benders cut proposed in section 5.4.3.2. Finally, alternative
approaches to generate single mean-cut (Type C cut) and multiple mean-cut (Type D

cut) utilizing the dual subproblem variables are proposed.

Primal-based mean-value cut

Type A cut: This approach appends a set of primal subproblem constraints to
the [MP] under mean-value scenario e (a scenario comprising of mean values of the
stochastic parameters). Additionally, to generate high quality feasible solutions
during the early iterations of the Benders decomposition algorithm, an inequality
is generated to strengthen the lower bound of the free variable ©. In this purpose,
following additional parameters and decision variables are introduced.

Auxiliary parameters:

® ¢uir - mean supply availability of product m € M in port i € Z at time
period t € T
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e @;j; : mean allowable load that can be carried between the channel (i,]) €
(Z,J) at time period t € T

Auxiliary variables:

® Zuir: mean amount of commodities of type m € M processed at porti € 7
at time period t € T

® Xyubsnijre: amount of commodities of type m € M that were purchased at
time period T and transported at time period t € 7 using barge b € B of
towboats € Sof tripn € Njjalongarc (i,) € (Z,J),where (7,t) € T|t <t

e H,iry: amount of commodities of type m € M stored in porti € ZU J
between time period T and t , where (7,t) € T|t < ¢

e U,j: amount of commodities of type m € M shortage in destination port
j € J at time period t € T

® DPyjr : amount of demand of commodities of type m € M satisfied in desti-
nation port j € J with commodities purchased at time period 7 and trans-
ported at time period t € T, where (7,t) € T|t <t

The following constraints are now added to the master problem [MP] :
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Zoit < @uVme M, i€ L,teT (5.100)

Zmit — Z Z Z Z mesnijtt = I:Imitth eEM,iceZ,teT (5.101)
beBseSneN;; jeJ;
(1 - lme(t—l))I:ImiT(t—l) = E Z 2 E mesnijTtI:Imi'rt
beBseS neNj jeJ;

Vme M,i € Z,(t,t) € T|t <t—15.102)

Yo ) Y Y Xuwsnijt = Pujut + HyjuVm € M, je J,t € T (5.103)
beBseS eNjjieT;

Z Z Z Z mesnijrt - ij*rt + Hmjrt - (1- ‘xm’r(tfl))I:Iij(t—l)
beBseS €N ieT;

Vme M,je J,(t,t) € T|t <t—15.104)

t
Y Pujrt = dyjt — UppVm e M,j€ T, t €T (5.105)
=1

t

Y. Y Huye < BNieZ|JT teT (5.106)
meM t=1
t
Z mesnijTt < mii’l{?])l’]’t, ZDb}Yrrzbsnijtvm e M,beB,
=1

seS,neNyieljeJ,teT (5107)

t

Z mesnijrt < vamebsnijtvm eEM,beB,seS,
=1
neNjieljecJ,teT (5.108)
mesnijrt/ I:Imirtr I:Imjrtr Zmit/ ijrt/ amjt e RF (5.109)
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In addition to the constrains discussed above, the following lower-bounding
cut is also added to [MP]:

t

t
G Z Z ( Z Z hmiTthiTt + Z Z Z Z Z CmbsnijTtmesnijTt

teT meM N\ieZTU J =1 beBseSneN;; (ij)e(Z,J) =1
+ Y YmitZomit + Y ﬂmjtflmjt) (5.110)
i€ jeJ

Type B cut: This approach appends a set of primal subproblem constraints to [MP]
under mean scenario bundle e;; | € L. Further, free variable © is now modified as
©; which allows adding multiple cuts, one for each scenario bundle I € L. To
generate the primal-based multiple mean-value cut, following additional parameters

and decision variables are now introduced:

Auxiliary parameters:

® ¢ : mean supply availability of product m € M in porti € 7 at time
period t € T under scenario bundle ] € £

e W;;; : mean allowable load that can be carried between the channel (i,j) €
(Z,J) at time period t € T under scenario bundle ! € L

Auxiliary variables:

e Z,iy: mean amount of commodities of type m € M processed at porti € Z
at time period t € 7 under scenario bundle ! € £

° mesnijﬁl: amount of commodities of type m € M that were purchased at
time period T and transported at time period t € T using barge b € B of
towboat s € S of trip n € Nj; along arc (i,j) € (Z, J) under scenario bundle
l € L,where (1,t) e T|T <t

e H,.;: amount of commodities of type m € M stored in porti € ZUJ
between time period T and t under scenario bundle I € L, where (7,t) €
Tlt<t

279

www.manaraa.com



e Uy,jy: amount of commodities of type m € M shortage in destination port
j € J at time period t € 7 under scenario bundle ! € £

° Nm]-.ftl : demand of commodities of type m € M satisfied at destination port
j € J with commodities purchased at time period T and transported t € T
under scenario bundle ! € £, where (7,t) € T|t <t

Similar to the constraints (5.100)-(5.109), we now add a set of primal constraints
to the Benders master problem [MP] one for each scenario bundle | € £. Addi-

tionally, lower-bounding cuts (5.111) are added to [MP] for each sceanrio bundle

leLl.
t t
0, >) ) ( Yoo X hwietHpien + Y. Y Y Y. ) Cosnijrt Xmbsnijr
teT meM NieZJJ t=1 beBseS neNj (ij)e(Z,J) =1
+ Y YmitZominn + Y ﬂmthmjtl) le Ll (5.111)
ieZ jeJ

Dual-based mean-value cut

Type C cut: In this approach, we obtain the dual subproblem solutions under a

mean value scenario ¢, and using this solution, a single inequality is added to

[MP]. The set of dual variables, O ite, Kmites Gmittes Emjter Bmjrtes Xmijter Vites Ljter Gmbsnijter
and Aypsuijte are now redefined for the mean value scenarioe as B it Komits Comivtr Em its
B, ietr Xmjtr Vits T]-t, Cmbsnijts Kmbsnijt- In iteration r + 1 of the Benders master problem

[MP], following dual-based mean-value inequality can now be added solving the

dual suproblem [DSP]| for mean value scenario ¢ at iteration 7:

0> ¥ L (L duitws - Dwacos~ L T L T (o0

teT meM \jeJ i€l beBseSneN;;jeJ i€l
Kmbsnz’jif + min(wijtéz E)ﬁvqbsnijt@mbsnijt)) - Z ( Z Ei]_/it + Z Ejfft)
teT \iel jeJ
(5.112)
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Type D cut

This approach appends a set of inequalities to the [MP] based on the dual subprob-
lem solutions obtained under different mean value scenario bundles e¢; where | €
L. The set of dual variables (8,,ite, Kmite, Cmitter Emjtes Bmjtter Xmjtes Viter Ujter Gmbsnijtes
Ambsnijte) are now redefined as (@mita/fmité,/ th—tél,Em]‘tgl,EijtEI,)_(m]'tE[,VitEl,T]‘tgl,

Embsnijtél,/\mbsnijtgl) to account for holding the solutions for the mean value sce-
nario e;. The following dual-based mean-value cut can be added to [MP] in r + 1th

iteration of the Benders decomposition algorithm after solving the dual subprob-

lem [DSP] for mean value of scenario bundles ¢; in previous iteration r:

0>y Y (z Aot — 3 e e — L 1 Y Y z(mm@ﬁe,,

teT meM \jeJ ieZ beBseSneN;;jeJ i€l
b)YonbsnijtGmbsnije, + PmUmebsnithmbsnijte,)) - ( Y hivig, + ) hjrjte,)l €L
teT Niel jeJ

(5.113)

5.4.3.5 Knapsack inequalities

Santoso et al. [119] showed that once there is a good upper bound for Benders
decomposition algorithm, adding knapsack inequalities with optimality cut (5.54)
can have a considerable impact on the solution quality. In addition, adding knap-
sack inequalities to the master problem can aid the state-of-the-art solvers, such
as CPLEX and GURORBI to derive a variety of valid inequalities from the given
knapsack inequalities. Consequently, adding these inequalities might expedite

the convergence of the Basic benders decomposition algorithm. Let UB" be the
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best known upper-bound found until iteration r, in the next iteration, following
knapsack inequality is added to [RMP]:

UB" > Z < Z Pe( Z Z Z Z Z Z(met - min(wijtwg)gmbsnijte

teT \ecE meMbeBseS neN;; jeJ i€l

_vabAmbsnijte)Ymbsnijt + Z < Z dmthmjte - Z ¢mitel9mite>
meM \jeJ i€l

— ) hivie — Y Ejrjte) +)Y Y Y ) lPststijt) (5.114)

i€l jeJ seSneN;j i€l jeJ;
Likewise, let LB" be an the best known lower-bound obtained until iteration
r; the following knapsack inequality is added to [RMP] in r + 1 iteration of the

Benders decomposition algorithm:

LB"<) ). Y Y ) (lljst‘Ysm'jtJr Y. ) Umthmbsmjt> +0  (5.115)

teT seSneNjiel jeJ; meMbeB

5.4.3.6 Integer cut

The basic Benders decomposition algorithm sometimes generate repetitive so-
lutions in the earlier iterations of the algorithm. This is because in the earlier stage
of this algorithm, the master problem do not receive sufficient information from
the subproblems via the optimality cut (5.54). Repetitive solutions does not help
the Benders decomposition algorithm to converge, rather increases the the overall
running time of the algorithm. To address this issue and expedite the convergence
of the algorithm, following Integer cut is added to the master problem in each iter-

ation of the algorithm. Let Y" = {(m, b,s, n, i,j,t)\f/ =1,Vme M,be B,s €

.
mbsnijt

SneNyielje J,teT where 17;1 be the solution obtained by solving

bsnijt
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Benders master problem in any particular iteration r. The following integer cut is

added to the master problem in iteration r + 1:

Z (1 - Ymbsnijt) + Z Ymbsm’jt >1 (5.116)
(m,b,s,nijt)eY’ (m,b,s,nijt)¢Y"

This inequality force the barge selection decisions to be different in r + 1 iteration.
Adding this cut speeds up the convergence of the algorithm, however, excessive
addition of these cuts may cut the optimal search area and result in instability
problem. Therefore, in our experiments, we added this cut until the algorithm

reaches to an optimaltity gap of 10%.

5.4.3.7 Warm start strategy

Benders decomposition algorithm generate low quality solutions and suffer
from zig-zagging behavior in its earlier iterations. To overcome these issues, we
adopt a warm-start strategy (WSS) proposed by rahmaniani et al. [112] which gen-
erates an initial set of tight cuts. Different from the heuristic-based strategies,

the key of this strategy is to deflect the current master solution. Let ?mbsnijt be

Ystart

the solution of the current master problem, mibenit

be an initial starting point,
and 0 < Ays < 1 be a weight factor. Given these factors we deflect the current

master solution for barge selection variable using following equation, Y7 . it =
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v tart
{AwsYmpsnije + (1 = Aws) Ypeniie Feme M beBses, neNyjietjeg teT- Now to generate

cuts, we use the deflected solutions Y%7 _ ... in the following subproblem:

mbsnijt
[DP(WSS)] := Maximize 2 Z ( 2 dmthmjte - 2¢mitel9mite - Z Z Z 2
teT meM \jeJ i€l beBseSneN;;jeJ
Z (min (wijte/ E) Y;zzuzsnijtgmbsnijte + pmvberglisnithmbsnijte> ) -
i€l
2 ( Zﬁivite + 2 Ejl"]-te) (5.117)
teT \iel jeJ

subject to (5.39)-(5.52).

According to [105], if the starting solution Y3/t it satisfies the core point prop-
erties, we do not need to solve auxiliary subproblems to generate pareto-optimal
cut. This is because the deflected point in this case guarantees the generation of
non-dominated cuts. Additionally, the upper bound generated using the deflected
solution is also valid for the LP relaxation of the problem. Therefore, while apply-
ing this strategy, no auxiliary subproblems are required to be solved. This strategy
is also capable of considerably alleviating the instability issue of the MP. Further
this strategy dampens the initial large steps of the algorithm through taking an
average with a centered solution. Thus, the Y7 . it and the whole procedure can
also be interpreted as a stabilizing point and a stabilization strategy [40].

WSS is sensitive to the starting point values, Y3/t i+ Given the solution —
is obtained from the relaxed version of model [LBF] with maximum amount of

supply and water level (as is defined for lower bounding function), we set the

starting point as follows:

start  __ \/
Ymbsnijt - max{O.S, Ymbsnz’jt}VmeM,beB,ses,neMj,ieI,jGZ,teT
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5.4.3.8 Heuristic improvements

As previously mentioned, the initial iterations of the Benders decomposition
algorithm produce low-quality solutions to the master problem. Additionally, op-
timally solving the master problem [RMP] even with moderate sized network is
challenging. The performance improves as sufficient information from the sub-
problem is passed to the master problem via otimality cut (5.54). To overcome this
problem, we solve the [RMP] by initially setting a larger gap which gradually re-
duces with the progression of the iterations. For instance, we can initially set the
optimality gap for solving the [RMP] as 5% which is then reduce to 1% when the
gap between the upper and lower bound of the Benders decomposition algorithm
talls below 10%.
5.5 Experimental Results

This section presents a real-life case study to test the performance of our pro-
posed model [PIM] and draw managerial insights from it. The model and all
algorithms discussed in section 2.4 are coded in Python 2.7 on a desktop com-
puter with an Intel Core i7 3.6 GHz processor and 32.0 GB RAM. Optimization
solver Gurobi Optimizer 6.5° is used to solve the proposed model and solution
techniques. Three U.S. states alongside lower Mississippi river, namely, Arkansas
(AR), Mississippi (MS), and Louisiana (LA) are considered as a testing ground to
visualize and validate the modeling results. In the next few subsections, we dis-

cuss the input parameters, demonstrate the real-life case study and list the man-

3 Available from: http://www.gurobi.com/
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agerial insight obtained from the case study, and discuss the computational per-
g g Y p p

formance of the developed algorithms.

5.5.1 Data Description
5.5.1.1 Inland waterway port locations

This study considers eight inland waterway ports alongside Mississippi river.
Among these selected ports, the Port of Rosedale, Port of Greenville, Port of Vicks-
burg, and Port of Natchez are located in Mississippi and the Port of Geismar, Port
of Greater Baton Rouge, Port of South Louisiana, and Port of Gramercy are lo-
cated in Louisiana. These ports are connected to each other via the Mississippi

River system. The geographical locations of them are demonstrated in figure 5.2.

5.5.1.2 Supply data

In this study we consider two agricultural commodities, corn and soybean
that needs to be transported through the inland waterway transportation network.
Corn and soybean suppliers, located within 60 miles radius from the selected ports
are considered in this case study. We then aggregate the supply availability in-
formation of these commodities for each port considering the minimum distance
between suppliers to all origin ports. The supply availability of corn and soy-
bean (in 1,000 tons) is demonstrated in Figure 5.3. The test region produces 113.8
million tons of corn and 101.6 million tons of soybean in 59 and 49 different coun-

ties each year, respectively [135]. Corn is harvested only between mid-July and
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[ ] State Border
County Border

Figure 5.2

Inland waterway port locations along the Mississippi River
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early December of each year and soybean is harvested between mid-October and

November of each year [133].

5.5.1.3 Demand data

In this case study we consider Port of Rosedale, Port of Greenville, Port of
Vicksburg, and Port of Natchez as destination ports. These ports are located in the
state of Mississippi and commodities received in these ports are used to serve 43
industries located near the Mississippi River. Similar to the supply aggregation,
demand at any destination port is obtained by grouping the commodity demand
at industries located close to that destination port. The test region has an annual
demand of corn and soybean as 68.3 and 52.3 million tons, respectively [135]. The

yearly demand distribution of destination ports can be seen in Figure 5.4.

288

www.manaraa.com



R
0-250

250.1 - 500
500.1 -750

O 750.1 -1030

(a) Corn

Soybean

b 0-200
O 200.1 - 400
400.1 - 700

O
O7oo.1 -1,100

......

(b) Soybean
Figure 5.3

Supply availability for (a) Corn and (b) Soybean in the test region (in 1,000 tons)
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Figure 5.4

Demand of (a) Corn and (b) Soybean in the test region (in 1,000 tons)
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5.5.1.4 Transportation cost

The inland waterway transportation network considered in this study includes
origin ports and destination ports. Transportation between these two tiers (i,]) €
(Z,J) is done using towboats and barges. Considering the capacity of the Mis-
sissippi river, the towboats here are allowed to carry a maximum of 15 barges in
each trip [138] and the fixed cost of using a towboat is $244.38 [138]. Addition-
ally, the cost of loading and unloading commodities to each barge is set as $15.
The unit commodity transportation cost is $0.017 /mile/ton [48, 110]. All costs are

calculated based on 2018 dollars value.

5.5.1.5 Water-level Fluctuations

Transportation through inland waterway transportation network is seriously
impacted by the uncertain water level fluctuations of the river. This is a com-
mon problem faced by different river systems all over the world, Yangtze River
at China [94], Rhine River at Europe [94] and Tagliamento River at Europe [94]
are few examples of this. The Mississippi river also experiences significant water
level fluctuations in its different segments all over the year that imposes a serious
challenge to efficiently plan and conduct barge transportation through this river.
The lower portion of this river possesses sound water flow compared to the upper
portion of this river, therefore, the load carrying capacity of the lower Mississippi
river is more reliable compared to the upper Mississippi River. However, even

this segment is not free from fluctuations. Figure 5.5 demonstrates an example
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of water level fluctuations between Port of Rosedale and Port of Greenville from
July 2016 to June 2017 is provided. Each point in Figure 5.5 indicates the average
weekly water stage [139] at this river segment. Clearly, this figure identifies that
between middle of August to the end of December of a calender year the water
level drops and minimum water stage is obtained during the first three weeks of
October. Except this period, the water stage generally remains above the desired
level (14.2 feet) for other time periods, but in May when the water level reaches to

42 feet, which is higher than the demonstrated flood level, 37 feet.

43

33

‘Water Stage (feet)

[

W\ il AN
- " II I’ pR
& A
->IJuly—August|17 August - December :!: January - May 444- May—bl June Iq—
-7

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52

------ Minimum —=— Average ------ Maximum Flood stage Desired stage

Figure 5.5

Demonstration water level fluctuations between Port of Rosedale and Port of

Greenville from July, 2016 to June, 2017 [139]
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5.5.2 Real-life Case Study

The highly uncertain waterway conditions coupled with urgent delivery require-
ment of perishable products put the policymakers in serious dilemma to perform
effective and robust transportation planning for inland waterways. Therefore, to
facilitate decision making and derive some key managerial insights from our pro-
posed model [PIM], in this subsection we solve our designed real life case study
and perform sensitivity analysis on different key input parameters. The following
sections provide a comprehensive summary about the impact of these key input
parameters on model [PIM].
5.5.2.1 The impact of deterioration rate a;,; on the overall system performance
The deterioration of perishable commodities can significantly impact the opti-
mal resource allocation and transportation planning of the inland waterway ports
and the network under consideration. To closely analyze its impact on the over-
all system performance, we generate six different scenarios by considering +20%,
+40% and +£60% change in base deterioration rate of each commodity, i.e., corn
and soybean. Figure 5.6 delineates the impacts of these changes on different key
decision variables along with the overall system. The summary of the experimen-

tal outcomes is outlined below:

e With the increase in deterioration rate («x,,1¢), the overall inventory at desti-
nation ports (H,,jr;) decrease. More specifically, with 20%, 40%, and 60% in-
crease in aprt, Hyjrt changes by —42%, —50%, and —52% respectively from
the base case scenario (Figure 5.6(a)). The origin port inventory H,;;, on
the other hand, slightly increases with these changes, but this impact is not
much significant. In overall, 20%, 40%, and 60% increase in a;,;; decrease
the total storage at origin and destination ports by 10.6%,11.93%, and 12.3%
from the base case.

293

www.manaraa.com



e Decreasing a1t by 20%, 40%, and 60% changes Hm]-Tt by +2.4%,+46.2%, and
+53.3% from the base case scenario (Figure 5.6(a)). Alike the &, increment
cases, decrement cases also show minimal changes to the origin port inven-
tory H,ir;. The cumulative inventory storage changes by +-0.3%, +11.2%,
and +12.9% from the base case scenario due to —20%, —40%, and —60%
changes to the a;,1; (Figure 5.6(a)).

e Figure 5.6(b) represents that 20%, 40% and 60% increase in deterioration rate
the overall commodity transportation through the network is reduced by
16000, 23500, and 26000 tons from the base case, which negatively impacts
the demand satisfaction as well. On the other hand 20%, 40%, and 60% de-
crease in deterioration rate help system to transport about 3000, 14500, and
17500 tons more commodities from the base case that decreases the amount
of unsatisfied demand throughout the system.

e Figure 5.6(c) demonstrates that the overall system cost experience an increase
by 11.4%, 22.4%, and 32.9% from the base case cost due to +-20%, +-40%, and
+60% change in a;;7+. These changes increase the computational complex-
ity of the model, therefore, we notice about +21.1%, 429.9%, and +33.2%
change in solution time respectively, from the base case scenario. In con-
trary, —20%, —40% and —60% changes in deterioration rate change total sys-
tem cost by —11.5%,24.4%, and —36.8%, with a decrease in solution time
by 11.7%, 21.6%, and 26.7%, respectively from the base case scenario. This
clearly signifies the importance of deterioration rate (x,,7¢) on the inland wa-
terway transportation network.

e In overall, the amount of product stored in destination ports is highly im-
pacted by commodity deterioration.
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5.5.2.2 Impact of water level fluctuation w;j;,, on overall system performance

This set of experiment investigates the impact of water level fluctuation on the
overall system performance. We generate six water level scenarios considering
+15%, +30% and +45% change in mean water level w;j;, and compare the results

with for the base w;j,,. Our observations from this experiment are listed below:

e The results in Figure 5.7(a) indicate that with 15%, 30% and 45% increase
in W;j, the overall barge usage drops by 13.2%,22.7%, and 28.3%, addition-
ally, we see the reduction in the overall towboat usage by 9.8%, 18.1%, and
25.1%, respectively from the base case scenario. In contrary, 15%, 30%, and
45% decrease in mean water level @;;;,, compels the system to utilize 17.1%,
37.5%, and 60.6% more barges respectively than the base case. With these
changes the system is now motivated to use 17.2%,36.8%, and 58.9% more
towboats from the base case. This is because as the mean water level drops,
to avoid barges being stuck in any part of the waterway, the system decides
to transport less load on each barge compared to its design capacity, hence
the overall barge usage raises and we need more towboats to transport these
additional barges.

e Figure 5.7(b) illustrates the impact of mean water level @;;;,, on the load per
barge and the load per storage. As previously mentioned, different water
level condition requires barges to adjust their weight capacity. Hence, once
Wijt is increased by 15%, 30% and 45%, the load per barge increases by
+15.1%, +29.3%, and +39.6% respectively from the base case scenario. On
the other hand, 15%, 30% and 45% reduction w;j;, causes the barges to carry
14.6%, 29.6% and 44.3% less products from the base case scenario. Further,
change in mean water level impacts the utilization of available storage ca-
pacity. With 45% increase in w;j, the storage capacity utilization rises by
+12.1%, whereas in the extreme water level case i.e., —45% this change is
about —9.5%. This explains that with the higher water level, more commodi-
ties can be transported which triggers more storage requirement to support
the peak demand other than using the third party supply.

e Figure 5.7(c) indicates that although increase in mean water level has no con-
siderable effect on objective function value, with 30% and 45% decrease in
mean water level, due to the the increase in unsatisfied demand, objective
function value changes by +16.3%, and +33.9% respectively from the base
case scenario. Additionally, it can be observed that change in mean water
level has a direct impact on the complexity of model, that can be measured
by solution time. As mean water level decrease by 15%, 30% and 45%, the
corresponding solution time change by 443.5%,4-73.4%, and +85.4% from
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the base case scenario. However, with 15%, 30% and 45% increase in mean
water level, solution time drops by 34.9%, 42.1% and 47.9% from the base
case scenario. This result signifies that with higher water level the model
complexity reduces, therefore, less time is required to solve the model. This
highlights the importance of water level(w;j;,) considerations on the inland
waterway transportation network.
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5.5.3 Performance Evaluation of the Algorithms

This section presents our computational experience in solving model [PIM] using
the algorithms presented in Section 2.4. We vary sets |Z|, | J|, |[M|, |S], and | T| in
[PIM] to generate 9 different problem instances, the details of these instances can
be found in Table 5.1. We used following termination criterion to terminate the
algorithms: (i) the optimality gap, i.e., € = |UB — LB|/UB falls below a threshold
value (e.g., € = 2.0%); (ii) the maximum time limit, "** is reached (e.g., t"** =

max

14,400 CPU seconds); or (iii) the maximum iteration limit, 4"** is reached (e.g.,

max = 500). Tables 5.2, 5.3, and ?? shows the the performance of different variants

q
of Benders decomposition algorithm. In reporting results, the column headings
€(%) and t(sec) respectively indicate the optimality gap and solution time. Note
that, while reporting the dominant algorithm for each test instance, we highlighted
the algorithm which yield the lowest solution time to solve the given instance
within the predefined gap threshold (¢ = 2.0%). If such a quality solution is not

found within the stipulated time frame, the algorithm with lowest optimality gap

was highlighted.
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Table 5.1

Problem size and test instances

Instance Binary Continuous Total No. of
1z gl M BE S| N (T

No variables variables variables  constraints
1 4 2 2 15 6 5 4 22,320 86,768 109,088 59,200
Small 2 4 2 3 15 8 5 4 44,160 173,352 217,512 107,592
3 4 2 4 15 10 5 4 73,200 288,736 361,936 170,384
4 6 3 2 15 6 5 4 55,800 216,552 272,352 147,624
Medium 5 6 3 3 15 8 5 4 110,400 432,828 543,228 268,452
6 6 3 4 15 10 5 4 183,000 721,104 904,104 425,280
7 8 4 2 15 6 5 4 104,160 403,936 508,096 275,264
Large 8 8 4 3 15 8 5 4 206,080 807,504 1,013,584 500,688
9 8 4 4 15 10 5 4 341,600 1,345,472 1,687,072 793,312

The first set of experiments test the performance of Type-1 and Type-2 cuts
with and without the inclusion of Pareto-optimal (PO) cut under the Benders de-
composition algorithm. Table 5.2 shows the results of these four variants of ac-
celerated Benders decomposition algorithm. Note that all these algorithms were
nested under the Sample average approximation (SAA) scheme with a sample size
E = 100. The result shows that, incorporating PO cut with both Type-1 and
Type-2 cuts significantly improve the optimality gap € and reduce the run time
t. Specifically, applying PO cut with Type-1 cut changes the optimality gap from
12.02% to 2.15% along with saving the computational time by 5,058 CPU seconds,
on average. For Type-2 cut with PO these changes are 12.00% to 2.12% and 5,194,

respectively. Additionally, Table 5.2 points out that the Type-2 cut slightly domi-
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nates Type-1 cut in terms of both optimality gap and running time. Also, the PO

cut with Type-2 cut variant outperforms other three algorithm variants in Table

5.2.

Table 5.2

Experimental results of Type-1 and Type-2 cut with and without PO cut

Type-1 Type-2

Instance W/o PO PO W/o PO PO
No. €(%) t(sec) €(%) t(sec) | €(%) t(sec) €(%) t(sec)
1 242 14400 0.88 2,120 | 2.68 14,400 0.62 2,184
2 539 14,400 0.12 3,619 | 571 14,400 1.05 3,869
3 936 14400 195 8,144 | 9.07 14,400 1.89 7,721
4 6.65 14400 1.82 5424 | 6.73 14,400 1.34 5,512
5 11.78 14,400 142 11,239 | 12.14 14400 1.64 10,942
6 16.24 14,400 3.17 14,400 | 16.78 14,400 3.02 14,400
7 997 14,400 119 10,332 | 954 14,400 1.48 9,426
8 19.62 14,400 3.41 14,400 | 20.46 14,400 294 14,400
9 26.78 14,400 542 14400 | 2496 14,400 5.17 14,400
Average 12.02 14,400 2.15 9,342 | 12.00 14,400 212 9,206

Next, we compare the computational benefits of adding Type A, B, C, and D

cuts to the Benders decomposition algorithm through the results summarized in
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Table 5.3. This set of experiments also uses the same SAA sample size i.e., E =
100. Additionally, all algorithm variants in Table 5.3 include valid inequalities and
knapsack inequalities discussed in sections 5.4.3.1 and 5.4.3.5, respectively. Results
in Table 5.3 indicate that Type D cut variant dominates other three cut variants
in terms of solution time and quality. Even though among 9 problem instances it
solves the first instance within the time limit, but for another 6 out of 8 remaining
instances, this algorithm provides the best optimality gap, 10.05% on average. In
summary, the addition of Type D cut can reduce the optimalty gap to almost one
third of that produced by Type A and B cuts. Further, Type B and D cut that uses
scenario bundling technique can make the basic Benders decomposition algorithm

highly efficient and among them Type D shows the best result.
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Table 5.3

Experimental results with Type A, B, C, and D cuts

Instance Type A Type B Type C Type D

No. €(%) t(sec) | €(%) t(sec) | (%) t(sec) | €(%) t(sec)

1 735 14400 | 1.75 12,621 | 544 14,400 | 1.68 11,632
2 14.03 14,400 | 2.68 14,400 | 11.98 14,400 | 2.07 14,254
3 2497 14,400 | 948 14,400 | 21.71 14,400 | 8.74 14,400
4 17.61 14,400 | 6.12 14,400 | 15.08 14,400 | 6.76 14,400
5 3248 14,400 | 11.28 14,400 | 32.37 14,400 | 10.51 14,400
6 44.61 14,400 | 15.32 14,400 | 43.68 14,400 | 13.78 14,400
7 30.02 14,400 | 8.97 14,400 | 27.30 14,400 | 9.07 14,400
8 41.60 14,400 | 19.87 14,400 | 43.42 14,400 | 16.45 14,400

9 4940 14,400 | 24.92 14,400 | 4991 14,400 | 21.39 14,400

Average 29.11 14,400 | 11.15 14,202 | 27.87 14,400 | 10.05 14,076

The experiments presented in Table 5.3 clarifies the dominance of enhanced
Benders decomposition algorithm with Type D cut in solving the model [PIM]. To
test the performance of other enhancement techniques discussed in section 5.4.3,
tirst we select the enhanced Benders decomposition algorithm with Type D cut
and add Type-2 cut enhanced with PO with it which was the dominant cut in

Table 5.2. We name this new algorithm variant as TD+T2+PO. Next, we define
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few new variants by sequentially adding the integer cut with heuristics and the
warm start strategy to algorithm TD+T2+PO and denote them as TD+T2+PO+Int
and TD+T2+PO+Int+WSS. All these new algorithm variants along with Type D
variant are tested under three different SAA sample sizes, W; = 100, W, = 150,
and W3 = 200 and the results of this experiment are reported in Tables 5.4, 5.5,
and 5.6. The numerical results show that Type D cut variant is able to solve only
the first instance out of 9 instances for all three scenario size problems under the
pre-specified termination criteria. Algorithm TD+T2+PO, on the other hand, can
efficiently solve 8 instances of model [PIM] with |Q}| = 100 and |Q| = 150, and 7
instances of the problem with || = 200. In addition, applying TD+T2+PO cut,
the average optimality gap achieved with Type D cut is now changed to 1.66%,
1.75%, and 1.92% for |Q)] = 100, |Q}| = 150, and |Q)| = 200, respectively. The solu-
tion time also drops by 41.5, 38.7, and 35.4%. Including the integer cut and heuris-
tic improvement techniques to TD+T2+PO cut (TD+T2+PO+Int cut) we achieve
a slightly better solution quality with a quicker solution time. However, this ac-
celerating technique also could not solve the last instance of both 150 and 200
scenario problems. Finally, we apply TD+T2+PO+Int+WSS cut and the results
show that this cut significantly improves the performance of the basic Benders de-
composition algorithm and additionally it can solve all test instances under the
experimental range. TD+T2+PO+Int+WSS cut reduces the solution time from
7,914, 8,417, and 8,906 CPU seconds to 7,570, 8,059, and 8,581 CPU seconds,

which was produced by the TD+T2+PO+Int cut for the 100, 150, and 200 scenario
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problems, respectively. This technique also slightly reduces the average optimality
gap that was obtained using TD+T2+PO+Int technique. Further, Tables 5.4, 5.5,
and 5.6 lists the results of transportation and storage related decision variables for
all test instances. The average value of these transportation and storage related
decisions for problem [PIM] with |Q)| = 100, |Q}] = 150, and |Q}] = 200 shows
almost same results with negligible difference. For example, for the 100, 150, and
200 scenario problems, the average number of barges used is equal to 1691,1691,
and 1693 which are very close. Therefore, we can realize that considering only 100
scenarios would be enough to obtain robust solutions from our proposed model,
whereas with increased scenarios the model will be computationally more chal-
lenging requiring more time to solve (e.g., 200 scenarios problem takes 12% more

time compared to 100 scenario problem).
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Algorithm 1:The Benders decomposition algorithm

Initialization: , 7 <= 1,€, UB" <~ 400, LB" <~ —0c0, P}, <~ 0
terminate < false
while terminate = false do
Solve [MP] to obtain {Ysrnijt}sesrne Niji€T je TteT
and {Y;bsnijt}meM,beB,seS,neJ\/’ij,ieI,jej,-,teT and zj;p
if z);,, > LB’ then
LB" < zlyp
end if
For fixed {Y;bsnijt}meM,beB,seS,neNij,ieI,jej,,teT and {?;nijt}SES,neMj,iGI,jeJi,teT
solve [DSP] to obtain (8,x,{,¢,B,x,v,T, g, A) € Pp and z§ 5
if 25, + Zhag < UB" then
UB" <= zgyp + Zpmas
end if
if % < ¢ then
terminate <— true
else
P« PLU{(9,x,C,¢B,xv,T,6,A)}
end if
r<—r+1

end while
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Algorithm 2: OpenCloseArcs algorithm

Initialization: Va;; € (D,D),te T : YIS 4= Ty X Os; Yt’fufj —Yia; =0
Ve T : U + Zui,»e(ﬁ,g) Uta;; Dt = d;’%"@;ed «—107°
fort € T do
for a;; € (D, D) (in arbitrary order) do
if {Viuvsnayt FomempeB ses nen;; > 0 do

RE RE
Yt/ﬂij < Yt,ﬂij +1

end if
RE
va Ytraij
compute Y, = Ve
t,ajj

if Yf/ﬂij <e¢;and U; — Ut,a; > Dy then
Add ajj to Co s
Close a;; by setting Uy «— U — it,q
end if
if Yiq, > 1—e;and Dy — uy,, > 0 Then
Add ajj to Cy 4
Open a;; by setting D; <— D — Ut,a; and U; < U; — Ut
end if

end for

end for
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5.6 Conclusion and Future Research Directions

This study develops a two-stage stochastic mixed-integer linear programming
model that determines the optimal resource usage and transportation related strate-
gic and tactical decisions for an inland waterway transportation network under
uncertainty. The model is designed to capture all realistic features of inland wa-
terway transportation network including variability in water level, commodity
supply, and the shelf life of commodities and provide the reliable network design
solutions. Prime solutions such as the trip-wise towboat and barge assignment de-
cisions, inventory management, and transportation decisions obtained from our
model provides a reliable plan for inland ports under consideration with a mini-
mal impact of uncertainty. We developed a nested decomposition algorithm com-
bining the enhanced Benders decomposition algorithm with the sample average
approximation method to solve our proposed optimization model in an efficient
and timely manner. We demonstrate a case study considering a few Southeast US
States as a ground of analysis. Additionally, sensitivity analysis is conducted that
reveals the impact of various key input parameters (e.g., commodity deterioration
rate and water level fluctuation) on the modeling result and reveals a number of
managerial insights for policy makers and future investors.

To sum up, the major contributions of this work are as follows: (i) developing
a multi-commodity, multi-time period two-stage stochastic mixed integer linear
programming model to optimize the inland waterway port operations considering

the perishable products, uncertain commodity supply and waterway conditions
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with all realistic inland waterway related issues; (ii) presenting a novel nested
decomposition combining Sample Average Approximation, and enhanced ben-
ders decomposition to solve realistic-size network design problems; (iii) extract-
ing crucial managerial insight from a real-life case study. Note that, our proposed
methodologies can also be adopted in solving different stochastic optimization
problems. The managerial insights drawn from the case study will help policy
makers to design and manage a robust and cost-efficient inland waterway trans-
portation network under uncertainty

This research direct us to explore multiple research avenues. We might model
the barge and towboat flows using the essence of the vehicle routing problem.
Additionally, the barge and towboat routing, scheduling, and re-positioning is-
sues can be considered to analyze the impact of them on the inland waterway port
operations. Further, realizing that the inland waterway ports may experience both
natural (e.g., hurricane, tornado) and/or human-induced (e.g., cyber attack) dis-
ruptions, the impact of these disruptions on inland waterway port operations can

also be investigated. Future studies will address these issues.

312

www.manaraa.com



REFERENCES

[1] Adulyasak., Cordeau].-F,, Jans R., “Benders decomposition for production
routing under demand uncertainty,” Operations Research, vol. 63, 2015, pp.
851-867.

[2] Aghalari A., Nur F, Marufuzzaman M., “A Benders based nested decom-
position algorithm to solve a stochastic inland waterway port management

problem considering perishable product,” International Journal of Production
Economics, 2020, p. 107863.

[3] Ahmadi-Javid A., Hoseinpour P.,, “Service System Design for Managing
Interruption Risks: A Backup-Service Risk-Mitigation Strategy,” European
Journal of Operational Research, 2018.

[4] Al Enezy O., van Hassel E., Sys C., Vanelslander T., “Developing a cost
calculation model for inland navigation,” Research in Transportation Business
& Management, vol. 23, 2017, pp. 64-74.

[5] Al-Khayyal F, Hwang S.J., “Inventory constrained maritime routing
and scheduling for multi-commodity liquid bulk, part I: Applications and
model,” European Journal of Operational Research, vol. 176, no. 1, 2007, pp.
106-130.

[6] Alfandari L., Davidovié T., Furini F,, Ljubi¢ L., Mara$ V., Martin S., “Tighter
MIP models for Barge Container Ship Routing.,” Omega, vol. In press, 2017.

[7] Alfaqiri A., Hossain N.U.L, Jaradat R., Abutabenjeh S., Keating C.B., Kha-
sawneh M.T., Pinto A.C., “A systemic approach for disruption risk assess-

ment in oil and gas supply chains,” International Journal of Critical Infrastruc-
tures, vol. 15, no. 3, 2019, pp. 230-259.

[8] American Society of Civil Engineers.,, “The economic impact Of cur-
rent Investment Trends in Airports, Inland Waterways, and Marine Ports
Infrastructure,” Available from: https://www.asce.org/airports_
inland_waterways_and_marine_ports_report/,2012.

[9] An F, Hu H., Xie C., “Service network design in inland waterway liner
transportation with empty container repositioning.,” European Transport Re-
search Review, vol. 7, no. 2, 2015, pp. 1-11.

313

www.manaraa.com



[10] Apaiah RK., Hendrix EM.T., “Design of a supply chain network for pea-
based novel protein foods,” Transportation Research Part D, vol. 70, no. 3,
2005, pp. 383-391.

[11] Arango C., Cortés P., Mufiuzuri J., Onieva L., “Berth allocation planning in
Seville inland port by simulation and optimisation,” Advanced Engineering
Informatics, vol. 25, no. 3, 2011, pp. 452—461.

[12] Balinski M.L., “Fixed cost transportation problems,” Naval Research Logistics
Quarterly, vol. 8, 1961, pp. 41-54.

[13] Baroud H., Barker K., Ramirez-Marquez J.E. , “Importance measures for
inland waterway network resilience.,” Transportation research part E, vol. 62,
2014, pp. 55-67.

[14] Batun S., Denton B.T., Huschka T.R., Schaefer A ]., “Operating room pooling
and parallel surgery processing under uncertainty.,” INFORMS Journal on
Computing, vol. 23, no. 2, 2011, pp. 220-237.

[15] Benders J.F.,, “Partitioning procedures for solving mixedvariables program-
ming problems.,” Numerische Mathematik, vol. 4, 1962, pp. 237-252.

[16] Birge J.R., Louveaux E, “ Introduction to Stochastic Programming.,” New
York, NY, USA, 1997.

[17] Birge J.R., Louveaux EV., “A multicut algorithm for two-stage stochastic
linear programs.,” European Journal of Operational Research, vol. 34, no. 3,
1988, p. 384392.

[18] Blazquez C.A., Adams T.M., Keillor P., “Optimization of mechanical dredg-
ing operations for sediment remediation.,” Journal of waterway, port, coastal,
and ocean engineering, vol. 127, no. 6, 2001, pp. 299-307.

[19] Braekers K., Caris A., Janssens G.K., “Optimal shipping routes and vessel
size for intermodal barge transport with empty container repositioning.,”
Computers in Industry, vol. 64, no. 2, 2013, pp. 155-164.

[20] Braekers K., Janssens G., Caris A., “Determining optimal shipping routes
for barge transport with empty container repositioning,” EUROSIS, 2010.

[21] Chang M., Tseng Y., Chen J., “A scenario planning approach for the flood
emergency logistics preparation problem under uncertainty.,” Transportation
Research Part E: Logistics and Transportation Review, vol. 43, no. 6, 2007, pp.
737-754.

314

www.manaraa.com



[22] Chen C.-W.,, Fan Y., “Bioethanol supply chain system planning under supply
and demand uncertainities.,” Transportation Research Part E, vol. 48,2012, pp.
150-164.

[23] Chouman M., Crainic T.G., Gendron B., “Commodity representations and
cut-set-based inequalities for multicommodity capacitated fixed-charge net-
work design,” Transportation Science, vol. 51, no. 2, 2016, pp. 650-667.

[24] Christiansen M., Fagerholt K., Flatberg T., Haugen ., Kloster O., Lund E.H.,
“Maritime inventory routing with multiple products: A case study from the
cement industry,” European Journal of Operational Research, vol. 208, no. 1,
2011, pp. 86-94.

[25] Cornett A., Tschirky P.,, Knox P, Rollings S., “Moored ship motions due to
passing vessels in a narrow inland waterway,” Coastal Engineering 2008: (In
5 Volumes), World Scientific, 2009, pp. 722-734.

[26] Crainic T.G., Fu X., Gendreau M., Rei W., Wallace SSW., “Progressive
hedging-based metaheuristics for stochastic network design,” Networks, vol.
58, 2011, pp. 114-124.

[27] Dadashi A., Dulebenets M.A., Golias M.M., Sheikholeslami A., “A novel
continuous berth scheduling model at multiple marine container terminals
with tidal considerations.,” Maritime Business Review, vol. 2, no. 2, 2017, pp.
142-157.

[28] Davidovic T., Lazic J.,, Maras V., Stepe V., “Combinatorial formulation
guided local search for inland waterway routing and scheduling,” Proceed-
ings of 13th IASTED International Conference on Control and Applications, 2011.

[29] De A.M., Vamsee K.R.G., Angappa S., Nachiappan T., Manoj K., “Compos-
ite particle algorithm for sustainable integrated dynamic ship routing and
scheduling optimization,” Computers & Industrial Engineering, vol. 96, 2016,
pp- 201-215.

[30] Depuy G.W,, Taylor G.D., Whyte T., “Barge fleet layout optimization.,” In-
ternational Journal of Computer Integrated Manufacturing, vol. 17, no. 2, 2004,
pp. 97-107.

[31] DeVuyst E., Wilson W.W.,, Dahl B., “Longer-term forecasting and risks in
spatial optimization models: The world grain trade,” Transportation Research
Part E: Logistics and Transportation Review, vol. 45, no. 3, 2009, pp. 472-485.

[32] DuY., Chen Q., Lam J.S.L., Xu Y., Cao J.X., “Modeling the impacts of tides
and the virtual arrival policy in berth allocation.,” Transportation Science, vol.
49, no. 4, 2015, pp. 939-956.

315

www.manaraa.com



[33] Duan G., Nur E, Alizadeh M., Chen L., Marufuzzaman M., Ma J., “Vessel
routing and optimization for marine debris collection with consideration of
carbon cap,” Journal of Cleaner Production, 2020, p. 121399.

[34] Elhedhli S.,, Wu H., “A Lagrangean heuristic for hub-and-spoke system de-
sign with capacity selection and congestion,” INFORMS Journal on Comput-
ing, vol. 22, no. 2, 2010, pp. 282-296.

[35] Elia J.A., Baliban R.C., Xiao X., Floudas C.A., “Optimal energy supply net-
work determination and life cycle analysis for hybrid coal, biomass, and
natural gas to liquid (CBGTL) plants using carbon-based hydrogen produc-
tion,” Computers & Chemical Engineering, vol. 35, no. 8, 2011, pp. 1399-1430.

[36] P.etal., “Strategic Assessment of Bioenergy Development in the West: Spa-
tial analysis and supply curve development,” Final Report to the Western
Governors Association, prepared by the University of California-Davis, 2008.

[37] Fagerholt K., “A computer-based decision support system for vessel fleet
schedulingexperience and future research,” Decision Support Systems, vol.
37,no. 1, 2004, pp. 35-47.

[38] Fan L., Wilson W.W., “Impacts of congestion and stochastic variables on the
network for US container imports,” Journal of Transport Economics and Policy
(JTEP), vol. 46, no. 3, 2012, pp. 381-398.

[39] Fazi S., Fransoo J.C., Van W.T.,, “A decision support system tool for the
transportation by barge of import containers: a case study,” Decision Support
Systems, vol. 79, 2015, pp. 33-45.

[40] Fischetti M., Ljubi¢ I., Sinnl M., “Redesigning Benders decomposition for
large-scale facility location,” Management Science, vol. 63, no. 7, 2016, pp.
2146-2162.

[41] Fischetti M., Lodi A., “Local branching.,” Mathematical Programming, vol.
98, 2003, pp. 23—47.

[42] Folga S., Allison T., Seda-Sanabria Y., Matheu E., Milam T., Ryan R., Peeren-
boom J., “A systems-level methodology for the analysis of inland waterway
infrastructure disruptions.,” Journal of Transportation Security, vol. 2, no. 4,
2009, p. 121.

[43] Francesco M.D., Lai M., Zuddas P., “Maritime repositioning of empty con-
tainers under uncertain port disruptions.,” Computers & Industrial Engineer-
ing, vol. 64, no. 3, 2013, pp. 827-837.

316

www.manaraa.com



[44] Fredouet C.H., “Global supply-chain securization as applied to seaport op-
erations.,” Journal of International Logistics and Trade, vol. 5, no. 1, 2007, pp.
57-73.

[45] FuQ., LiuL., XuZ., “Port resources rationalization for better container barge
services in Hong Kong,” Maritime Policy and Management, vol. 37, no. 6, 2010,
pp- 543-561.

[46] Gade D., Hackebeil G., Ryan S.M., Watson ].P., Wets R.J].B., Woodruff
D.L., “Obtaining lower bounds from the progressive hedging algorithm for
stochastic mixed-integer programs,” Mathematical Programming, vol. 157, no.
1, 2016, pp. 47-67.

[47] GilE.M., Quelhas A.M., McCalley J.D., Van Voorhis T., “Modeling integrated
energy transportation networks for analysis of economic efficiency and net-

work interdependencies,” Proc. North American Power Symposium (NAPS),
2003.

[48] Gonzales D., Searcy E.M., Eksioglu S.D., “Cost analysis for high-volume
and long-haul transportation of densified biomass feedstock.,” Transporta-
tion Research Part A, vol. 49,2013, pp. 48-61.

[49] Gonzalez P.H., Simonetti L., Michelon P., Martinhon C., Santos E., “A vari-
able fixing heuristic with Local Branching for the fixed charge uncapacitated
network design problem with user-optimal flow,” Computers & Operations
Research, vol. 76, 2016, pp. 134-146.

[50] Grubisi¢ N., Hess S., Hess M., “A solution of berth allocation problem in
inland waterway ports.,” Tehnicki vjesnik, vol. 21, no. 5, 2014, pp. 1135-1141.

[61] Guan Y., Cheung R.K., “The berth allocation problem: models and solution
methods,” OR spectrum, vol. 26, no. 1, 2004, pp. 75-92.

[52] Heilporn G., Cordeau J.F,, Laporte G., “An integer L-shaped algorithm for
the dial-a-ride problem with stochastic customer delays,” Discrete Applied
Mathematics, vol. 159, no. 9, 2011, pp. 883-895.

[53] Hossain N.U.L., El Amrani S., Jaradat R., Marufuzzaman M., Buchanan R,,
Rinaudo C., Hamilton M., “Modeling and assessing interdependencies be-
tween critical infrastructures using Bayesian network: A case study of in-

land waterway port and surrounding supply chain network,” Reliability
Engineering & System Safety, vol. 198, 2020, p. 106898.

317

www.manaraa.com



[54] Hossain N.U.L.,, Jaradat R., Hosseini S., Marufuzzaman M., Buchanan
RK. “A framework for modeling and assessing system resilience using
a Bayesian network: A case study of an interdependent electrical infrastruc-
ture system,” International Journal of Critical Infrastructure Protection, vol. 25,
2019, pp. 62-83.

[55] Hossain N.U.IL, Jaradat R., Marufuzzaman M., Buchanan R., Rianudo C,,
“Assessing and enhancing oil and gas supply chain resilience: A Bayesian

network based approach,” IIE Annual Conference. Proceedings, 2019, pp. 241-
246.

[56] Hossain N.U.L, Nur E,, Hosseini S., Jaradat R., Marufuzzaman M., Puryear
S.M., “A Bayesian network based approach for modeling and assessing re-
silience: A case study of a full service deep water port,” Reliability Engineer-
ing & System Safety, vol. 189, 2019, pp. 378-396.

[57] Hossain N.U.L, Nur F,, Jaradat R., “An analytical study of hazards and risks
in the shipbuilding industry,” Proceedings of the international annual conference
of the American society for engineering management, 2016, pp. 1-8.

[68] Hossain N.U.I,, Nur E, Jaradat R., Hosseini S., Marufuzzaman M., Puryear
S.M., Buchanan R K., “Metrics for assessing overall performance of inland

waterway ports: A bayesian network based approach,” Complexity, vol.
2019, 2019.

[59] Hosseini S., Barker K., “Modeling infrastructure resilience using Bayesian
networks: A case study of inland waterway ports.,” Computers & Industrial
Engineering, vol. 93, 2016, pp. 252-266.

[60] Huang Y., Fan Y., Chen C.-W, “An integrated bio-fuel supply chain against
feedstock seasonality and uncertainty.,” Transportation Science, vol. 48, no. 4,
2014, pp. 540-554.

[61] Hvattum L.M., Lokketangen A., “Using scenario trees and progressive
hedging for stochastic inventory routing problems,” Journal of Heuristics,
vol. 15, 2009, pp. 527-557.

[62] Ibanez E., “A multiobjective optimization approach to the operation and
investment of the national energy and transportation systems,” 2011.

[63] Jans R., “Solving lot-sizing problems on parallel identical machines using
symmetry-breaking constraints.,” INFORMS Journal on Computing, vol. 21,
2009, pp. 123-136.

318

www.manaraa.com



[64] Jans R., Desrosiers J., “Efficient symmetry breaking formulations for the job
grouping problem.,” Computers & Operations Research, vol. 40, no. 4, 2013,
pp. 1132-1142.

[65] Kim D., Pardalos PM., “A solution approach to the fixed charge network
flow problem using a dynamic slope scaling procedure,” Operations Research
Letters, vol. 24, no. 4, 1999, pp. 195-203.

[66] Kleywegt A.]., Shapiro A., Homem-De-Mello T., “The sample average ap-
proximation method for stochastic discrete optimization.,” SIAM Journal of
Optimization, vol. 12, 2001, pp. 479-502.

[67] Konings R., “Network design for intermodal barge transport.,” Transporta-
tion Research Record: Journal of the Transportation Research Board, , no. 1820,
2003, pp. 17-25.

[68] Lalla-Ruiz E., Shi X., Vob S., “The waterway ship scheduling problem.,”
Transportation Research Part D, vol. 60, 2016, pp. 191-209.

[69] Laporte G., Louveaux FV., “The integer L-shaped method for stochastic
integer programs with complete recourse,” Operations research letters, vol.
13, no. 3, 1993, pp. 133-142.

[70] Lara C. L., Mallapragada D. S., Papageorgiou D. J., Venkatesh A., Gross-
mann . E.,, “Deterministic electric power infrastructure planning: Mixed-
integer programming model and nested decomposition algorithm,” Euro-
pean Journal of Operational Research, vol. 271, no. 3, 2018, pp. 1037-1054.

[71] Liao C., Tseng P., Cullinane K., Lu. C., “The impact of an emerging port
on the carbon dioxide emissions of inland container transport: An empirical
study of Taipei port.,” Energy Policy, vol. 38, no. 9, 2010, pp. 5251-5257.

[72] MacKenzie C.A., Barker K., Grant FH., “Evaluating the consequences of
an inland waterway port closure with a dynamic multiregional interdepen-
dence model.,” IEEE Transactions on Systems, Man, and Cybernetics-Part A:
Systems and Humans, vol. 42, no. 2, 2012, pp. 359-370.

[73] Magirou E.F., Psaraftis H.N., Bouritas T., “The economic speed of an ocean-
going vessel in a dynamic setting.,” Transportation Research Part B, vol. 76,
2015, pp. 48-67.

[74] Magnanti T.L., Wong R.T., “Accelerating Benders decomposition: Algorith-
mic enhancement and model selection criteria.,” Operations Research, vol. 29,
1981, pp. 464-484.

319

www.manaraa.com



[75] Mak W.K., Morton D.P.,, Wood R.K., “Monte Carlo bounding techniques for
determining solution quality in stochastic programs.,” Operations Research
Letters, vol. 24, 1999, pp. 47-56.

[76] Maras$ V., “Determining optimal transport routes of inland waterway con-
tainer ships.,” Transportation Research Record: Journal of the Transportation Re-
search Board, , no. 2062, 2008, pp. 50-58.

[77] Marchand D., Sanderson M., Howe D., Alpaugh C., “Climatic change and
great lakes levels the impact on shipping,” Climatic Change, vol. 12, no. 2,
1988, pp. 107-133.

[78] M. Marufuzzaman and S. D. Eksioglu, “Managing congestion in supply
chains via dynamic freight routing: An application in the biomass supply
chain,” Transportation Research Part E: Logistics and Transportation Review, vol.
99, 2017, pp. 54-76.

[79] Marufuzzaman M., Eksioglu S.D., “Designing a reliable and dynamic mul-
timodal transportation network for biofuel supply chains,” Transportation
Science, vol. 51, no. 2, 2016, pp. 494-517.

[80] Marufuzzaman M., Eksioglu S.D., Li X., Wang ], “Analyzing the impact
of intermodal-related risk to the design and management of biofuel supply
chain,” Transportation Research Part E: Logistics and Transportation Review, vol.
69, 2014, pp. 122-145.

[81] Marufuzzaman M., Eksioglu S.D., “Designing a Reliable and Dynamic
Multi-Modal Transportation Network for Biofuel Supply Chain.,” Trans-
portation Science, vol. 51, no. 2, 2017, pp. 494-517.

[82] Marufuzzaman M., Eksioglu S.D., Huang Y.E., “Two-stage stochastic pro-
gramming supply chain model for biodiesel production via wastewater
treatment,” Computers & Operations Research, vol. 49, 2014, pp. 1-17.

[83] Marufuzzaman M., Nur E, Bednar A.E., Cowan M., “Enhancing Benders
decomposition algorithm to solve a combat logistics problem,” OR Spectrum,
vol. 42, no. 1, 2020, pp. 161-198.

[84] Miller C.R., “The evolving role of rural river ports as strategic economic
development actors,” Water Resources and Rural Development, vol. 9, 2017,
pp. 28-38.

[85] Mississippi Department of Transportation, “Statewide Ports Needs And
Marketing Assessment.,” 2014.

320

www.manaraa.com



[86] Nachtmann H., Mitchell K., Rainwater C., Gedik R., Pohl E., “Optimal
dredge fleet scheduling within environmental work windows.,” Transporta-
tion Research Record: Journal of the Transportation Research Board, , no. 2426,
2014, pp. 11-19.

[87] Nachtmann H., Oztanriseven F.,, Economic evaluation of Arkansas inland
waterways and potential disruption impacts, Tech. Rep., Technical report,
Mack-Blackwell Rural Transportation Center. Retrieved from http://
mack-blackwell.uark.edu/Research/mbtc-3029.pdf, 2014.

[88] Nardi M.G., Sperry S.E., Davis T.D., “Grain supply chain management op-
timization using ARCGIS in Argentina,” 2007 ESRI User Conference Proceed-
ings, 2007, pp. 1-23.

[89] National Research Council, Funding and Managing the US Inland Waterways
System: What Policy Makers Need to Know, Transportation Research Board,
2015.

[90] Niagara Power Project., “Niagara river water level and flow fluctuations
study final report.,” Available from: http://niagara.nypa.gov/ALP\
$20working\%20documents/finalreports/html/IS23WL.htm,
2005.

[91] Norkin VI, Ermoliev Y.M., Ruszczynski A., “On optimal allocation of indi-
visibles under uncertainty.,” Operations Research, vol. 46, 1998, pp. 381-395.

[92] Norkin VI, Pflug G.C., Ruszczynski A., “A branch and bound method for
stochastic global optimization.,” Mathematical Programming, vol. 83, no. 3,
1998, pp. 425-450.

[93] Norstad I., Fagerholt K., Laporte G., “Tramp ship routing and scheduling
with speed optimization,” Transportation Research Part C: Emerging Technolo-
gies, vol. 19, no. 5, 2011, pp. 853-865.

[94] Notteboom T., “Container river services and gateway ports: Similarities
between the Yangtze River and the Rhine River ,” Asia Pacific Viewpoint, vol.
48, no. 3, 2007, pp. 330-343.

[95] Nur E, Aboytes-Ojeda M., Castillo-Villar K.K., Marufuzzaman M., “A Two-
stage Stochastic Programming Model for Biofuel Supply Chain Network
Design with Biomass Quality Implications,” IISE Transactions, , no. just-
accepted, 2020, pp. 1-55.

321

www.manaraa.com



[96] Nur F, Marufuzzaman M., Burch R., Puryear S., Wall E., “Analyzing the
Competitiveness of Inland Waterway Ports: An Application of Stochastic
Analytical Hierarchy Process,” Proceedings of IISE Annual Conference and Expo
2018, 2018, pp. 47-52.

[97] Nur F, Marufuzzaman M., Puryear S., Usher ]. M., “Optimizing InlandWa-
terway Port operations for Mississippi River,” Proceedings of Transportation
Research Board 98th Annual Meeting 2019, 2019.

[98] Nur E, Marufuzzaman M., Puryear S.M., “Optimizing inland waterway
port management decisions considering water level fluctuations,” Comput-
ers & Industrial Engineering, vol. 140, 2020, p. 106210.

[99] Nur E, Marufuzzaman M., Puryear S.M., Wall E.S., Burch R., “Inland wa-
terway ports selection and evaluation using stochastic analytical hierarchy
process,” International Journal of Systems Science: Operations & Logistics, 2020,
pp- 1-21.

[100] Olsen J.R., Zepp L. J., Dager C.A., “Climate impacts on inland navigation,”
Impacts of Global Climate Change, 2005, pp. 1-8.

[101] Ozdamar L., Aksu D.T,, Yasa E., Ergunes B., “Disaster relief routing in lim-
ited capacity road networks with heterogeneous flows,” Journal of Industrial
& Management Optimization, 2018, pp. 327-338.

[102] Oztanriseven F., Nachtmann H., “Economic impact analysis of inland wa-
terway disruption response,” The Engineering Economist, vol. 62, no. 1, 2017,
pp- 73-89.

[103] Pant R., Barker K., Landers T.L., “Dynamic impacts of commodity flow dis-
ruptions in inland waterway networks,” Computers & Industrial Engineering,
vol. 89, 2015, pp. 137-149.

[104] Papadakos N., “Practical enhancements to the Magnanti-Wong method.,”
Operations Research Letters, vol. 36, 2008, pp. 444—449.

[105] Papadakos N., “Integrated airline scheduling,” Computers & Operations Re-
search, vol. 36, no. 1, 2009, pp. 176-195.

[106] S. R. Poudel, M. A. Quddus, M. Marufuzzaman, L. Bian, et al., “Managing
congestion in a multi-modal transportation network under biomass supply
uncertainty,” Annals of Operations Research, 2017, pp. 1-43.

[107] Poudel S., Marufuzzaman M., Bian L., “A hybrid decomposition algorithm
for designing a multi-modal transportation network under biomass supply
uncertainty,” Transportation Research Part E, vol. 94, 2016, pp. 1-25.

322

www.manaraa.com



[108] Poudel S., Quddus M.A., Marufuzzaman M., Bian L., Burch R., “Manag-
ing Congestion in a Multi-Modal Transportation Network Under Biomass
Supply Uncertainty,” Annals of Operations Research, vol. doi:10.1007/
s10479-017-2499-y,2017.

[109] Poudel S.R., Marufuzzaman M., Bian L, “Designing a reliable bio-fuel sup-
ply chain network considering link failure probabilities,” Computers & In-
dustrial Engineering, vol. 91, 2016, pp. 85-99.

[110] Quddus M.A., Hossain N.U.I,, Mohammad M., Jaradat R.M., Roni M.S.,
“Sustainable network design for multi-purpose pellet processing depots un-

der biomass supply uncertainty,” Computers & Industrial Engineering, vol.
110, 2017, pp. 462-483.

[111] Rahmaniani R., Crainic T.G., Gendreau M., Rei W., “The Benders decom-
position algorithm: A literature review,” European Journal of Operational Re-
search, vol. 259, no. 3, 2017, pp. 801-817.

[112] Rahmaniani R, C.T., Gabriel G, Michel and Rei W, “Accelerating the Ben-
ders decomposition method: Application to stochastic network design prob-
lems,” SIAM Journal on Optimization, vol. 28, no. 1, 2018, pp. 875-903.

[113] Rainwater C., Nachtmann H., Adbesh F., “Optimal dredge fleet scheduling
within environmental work windows.,” MarTREC Report, 2016.

[114] Rakke J., Christiansen M., Fagerholt K., Laporte G., “The traveling salesman
problem with draft limits,” Computers & Operations Research, vol. 39, no. 9,
2012, pp. 2161-2167.

[115] Rawls C.G., Turnquist M.A., “Pre-positioning of emergency supplies for
disaster response,” Transportation research part B: Methodological, vol. 44, no.
4,2010, pp. 521-534.

[116] Rei W., Cordeau J.F, Gendreau M., Soriano P., “Accelerating Benders de-
composition by local branching.,” INFORMS Journal on Computing, vol. 21,
no. 2, 2009, pp. 333-345.

[117] Rockafellar R.T., Wets R.J.-B., “Scenarios and policy aggregation in opti-
mization under uncertainty,” Mathematics of operations research, vol. 16, 1991,
pp- 119-147.

[118] Roso V., “Evaluation of the dry port concept from an environmental per-
spective: A note.,” Transportation Research Part D, vol. 12, no. 7, 2007, pp.
523-527.

323

www.manaraa.com



[119] Santoso T., Ahmed S., Goetschalckx M., Shapiro A., “A stochastic program-
ming approach for supply chain network design under uncertainty.,” Euro-
pean Journal of Operational Research, vol. 167, 2005, pp. 96-115.

[120] Schutz P, Tomasgard A., Ahmed S., “Supply chain design under uncertainty
using sample average approximation and dual decomposition.,” European
Journal of Operational Research, vol. 199, 2009, pp. 409—419.

[121] Shabayek A.A., Yeung W.W., “A simulation model for the Kwai Chung con-
tainer terminals in Hong Kong,” European Journal of Operational Research, vol.
140, no. 1, 2002, pp. 1-11.

[122] Sherali H.D., Smith J.C., “Improving discrete model representations via
symmetry considerations.,” Management Science, vol. 47, 2001, pp. 1396—
1407.

[123] Shi H., Xu P.,, Yang Z., “Optimization of transport network in the Basin
of Yangtze River with minimization of environmental emission and trans-
port/investment costs,” Advances in Mechanical Engineering, vol. 8, no. 8,
2016, p. 1687814016660923.

[124] Sierksma G., Linear and integer programming: theory and practice, CRC Press,
2001.

[125] Simoes P., Marques R.C., “Seaport performance analysis using robust non-
parametric efficiency estimators.,” Transportation Planning and Technology,
vol. 33, no. 5, 2010, pp. 435—451.

[126] Skjeeveland G., Hilstad K.V., Ship Traffic Scheduling and Disruption Manage-
ment for the Kiel Canal-A Simulation-Optimization Approach, master’s thesis,
NTNU, 2018.

[127] Tan Z., Wang Y., Meng Q., Liu Z., “Joint Ship Schedule Design and Sail-
ing Speed Optimization for a Single Inland Shipping Service with Uncertain
Dam Transit Time,” Transportation Science, 2018.

[128] The American Waterways Operators., “Economic Contribution of
the US Tugboat, Towboat, and Barge Industry.” Available from:
https://www.marad.dot.gov/wp-content/uploads/pdf/
Econ-Impact-of-US-Tugboat-Towboat—-and-Barge-Industry-1h-6-22-17.
pdf, 2017.

[129] Ting C., Schonfeld P., “Integrated control for series of waterway locks.,”
Journal of Waterway, Port, Coastal, and Ocean Engineering, vol. 124, no. 4, 1998,
pp. 199-206.

324

www.manaraa.com



[130] Ting C.J., Schonfeld P., “Optimization through simulation of waterway
transportation investments.,” Transportation Research Record: Journal of the
Transportation Research Board, , no. 1620, 1998, pp. 11-16.

[131] Tockner K., Ward J.V., Arscott D.B., Edwards P.J., Kollmann J., Gurnell A.M.,
Petts G.E., Maiolini B., “The Tagliamento River: a model ecosystem of Eu-
ropean importance ,” Aquatic Sciences, vol. 65, no. 3, 2003, pp. 239-253.

[132] Trotter P.S., Johnson G.A., Ricks R., Smith D.R., “Floods on the lower

Mississippi: An historical economic overview.,” Available from: http:
//www.srh.noaa.gov/topics/attach/html/ssd98-9.htm, 2011.

[133] United States Department of Agriculture, “Usual Planting and Harvesting
Dates for U.S. Field Crops.,” Available from: https://usda.mannlib.
cornell.edu/usda/nass/planting/uph97.pdf, 1997.

[134] United States Department of Agriculture., “Barge Transportation.,” Avail-
able from: https://www.ams.usda.gov/sites/default/files/
media/RTIReportChapterl2.pdf, 2008.

[135] United States Department of Agriculture.,, “National Agricultural Statis-
tics Service.,” Available from: https://quickstats.nass.usda.gov/,
2014.

[136] United States Department of Agriculture., = “Forests of Mississippi,
2014.,” Awvailable from: https://www.srs.fs.usda.gov/pubs/ru/
ru_srs049.pdf, 2015.

[137] United States Department of Agriculture, “Fertilizer Use and Price.,”
Available from: https://www.ers.usda.gov/data-products/
fertilizer—-use—and-price.aspx, 2018.

[138] U.S. Army Corps of Engineers., “FY 2000 Planning Guidance Shallow Draft
Vessel Costs.,” Available from: http://www.iwr.usace.army.mil/
Portals/70/docs/iwrreports/00-05.pdf, 2000.

[139] U.S. Army Corps of Engineers, “Water levels of Rivers and Lakes.,”

Available  from: http://rivergages.mvr.usace.army.mil/
WaterControl/stationinfo2.cfm?dt=S\&sid=CE40F18A\&fid\
=VCKM6, 2018.

[140] U.S. Department of Transportation. Bureau of Transportation Statistics,
“Transportation Statistics Annual Report 2015, Washington, DC.,” 2015.

[141] Venturini G., Iris C., Kontovas C.A., Larsen A., “The multi-port berth al-
location problem with speed optimization and emission considerations.,”
Transportation Research Part D, vol. 54, 2017, pp. 142-159.

325

www.manaraa.com



[142] Verweij B., Ahmed S., Kleywegt A.J., Nemhauser G., Shapiro A., “The sam-
ple average approximation method applied to stochastic routing problems:
A computational study.,” Computational Optimization and Applications, vol.
24,2003, pp. 289-333.

[143] Vidyarthi N., Jayaswal S., “Efficient solution of a class of location—allocation
problems with stochastic demand and congestion,” Computers & Operations
Research, vol. 48, 2014, pp. 20-30.

[144] Wallace S.W., Helgason T., “Structural properties of the progressive hedging
algorithm,” Annals of Operations Research, vol. 31, 1991, pp. 445-456.

[145] Wang S., Meng Q., “Robust bunker management for liner shipping net-
works,” European Journal of Operational Research, vol. 243, no. 3, 2015, pp.
789-797.

[146] Wang S., Meng Q., Sun Z., “Container routing in liner shipping.,” Trans-
portation Research Part E, vol. 49, no. 1, 2013, pp. 1-7.

[147] Wang S.L., Schonfeld P., “Scheduling interdependent waterway projects
through simulation and genetic optimization.,” Journal of Waterway, Port,
Coastal, and Ocean Engineering, vol. 131, no. 3, 2005, pp. 89-97.

[148] Wang Z., Guo C., “Minimizing the risk of seaport operations efficiency re-
duction affected by vessel arrival delay,” Industrial Management & Data Sys-
tems, vol. 118, no. 7, 2018, pp. 1498-1509.

[149] Watling D.P., Hazelton M.L., “Asymptotic approximations of transient
behaviour for day-to-day traffic models,” Transportation Research Part B:
Methodological, vol. 118, 2018, pp. 90-105.

[150] Watson ].P.,, Woodruff D.L., “Progressive hedging innovations for a class of
stochastic mixed-integer resource allocation problems,” Computational Man-
agement Science, vol. 8, 2011, pp. 355-370.

[151] Wiegmans B., Konings R., “Intermodal inland waterway transport: Mod-
elling conditions influencing its cost competitiveness.,” The Asian Journal of
Shipping and Logistics, vol. 31, no. 2, 2015, pp. 273-294.

[152] Wiegmans B., Witte P., “Efficiency of inland waterway container terminals:
Stochastic frontier and data envelopment analysis to analyze the capacity
design-and throughput efficiency,” Transportation Research Part A: Policy and
Practice, vol. 106, 2017, pp. 12-21.

[153] Williams J.L, “Information theoretic sensor management.,” Available from:
http://hdl.handle.net/1721.1/38534,2007.

326

www.manaraa.com



[154] Yan X.P, Wan C.P,, Zhang D., Yang Z.L., “Safety management of water-
way congestions under dynamic risk conditionsA case study of the Yangtze
River,” Applied Soft Computing, vol. 59, 2017, pp. 115-128.

[155] Zhang M., Janic M., Tavasszy L.A., “A freight transport optimization model
for integrated network, service, and policy design.,” Transportation Research
Part E, vol. 77, 2015, pp. 61-76.

[156] Zhen L., “Modeling of yard congestion and optimization of yard template in
container ports,” Transportation Research Part B: Methodological, vol. 90, 2016,
pp. 83-104.

[157] Zhen L., Wang K., Wang S., Qu X., “Tug scheduling for hinterland barge
transport: A branch-and-price approach,” European Journal of Operational
Research, vol. 265, no. 1, 2018, pp. 119-132.

[158] Zou ]., Ahmed S., Sun X.A., “Multistage stochastic unit commitment using
stochastic dual dynamic integer programming,” IEEE Transactions on Power
Systems, 2018.

327

www.manaraa.com



	Developing models and algorithms to design a robust inland waterway transportation network under uncertainty
	Recommended Citation

	tmp.1625165283.pdf.BRfBv

